
Formal Specification of the ML Basis system

Copyright c© 2004
Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen Weeks

January 15, 2016

This document formally specifies the ML Basis system (MLB) in MLton used to program in the large.
The system has been designed to be a natural extension of Standard ML, and the specification is given in
the style of The Definition of Standard ML [MTHM97] (henceforeth, the Definition). This section adopts
(often silently) abbreviations, conventions, definitions, and notation from the Definition.

1 Syntax of MLB

For MLB there are further reserved words, identifier classes and derived forms. There are no further special
constants; comments and lexical analysis are as for the Core and Modules. The derived forms appear in
Appendix A.

1.1 Reserved Words

The following are the additional reserved words used in MLB.

bas basis

Note that many of the reserved words from the Core and Modules are not used by the grammar of MLB.
However, as the grammar includes identifiers from the grammars of the Core and Modules, it is useful to
consider the reserved words from the Core and Modules to be reserved in MLB as well.

1.2 Identifiers

The additional identifier class for MLB are BasId (basis identifiers). Basis identifiers must be alphanumeric,
not starting with a prime. The class of each identifier occurence is determined by the grammatical rules
which follow. Henceforth, therefore, we consider all identifier classes to be disjoint.

1.3 Infixed operators

The grammar of MLB does not directly admit fixity directives. However, the static and dynamic semantics
for MLB will import source files that must be parsed in the scope of fixity directives and that may introduce
additional fixity directives into scope. Figure 1 formalizes the Definition’s notion of infix status as a fixity
environment.

InfixStatus = {nonfix} ∪
⋃

d∈{0,...,9}{infix d, infixr d}
FE ∈ FixEnv = VId

fin−→ InfixStatus

Figure 1: Fixity Environment

1



1.4 Grammar for MLB

The phrase classes for MLB are shown in Figure 2. We use the variable basexp to range over BasExp, etc.

BasExp basis expressions
BasDec basis-level declaration
BasBind basis bindings
BStrBind (basis) structure bindings
BSigBind (basis) signature bindings
BFunBind (basis) functor bindings

Figure 2: MLB Phrase Classes

The conventions adopted in presenting the grammatical rules for MLB are the same as for the Core and
Modules. The grammatical rules are shown in Figure 3.

basexp ::= bas basdec end basic
basid basis identifier
let basdec in basexp end local declaration

basdec ::= basis basbind basis
local basdec1 in basdec2 end local
open basid1 · · · basidn open (n ≥ 1)
structure bstrbind (basis) structure binding
signature bsigbind (basis) signature binding
functor bfunbind (basis) functor binding

empty
basdec1 〈;〉 basdec2 sequential
path.mlb import ML basis
path.sml import source

basbind ::= basid = basexp 〈and basbind〉
bstrbind ::= strid1 = strid2 〈and bstrbind〉
bsigbind ::= sigid1 = sigid2 〈and bsigbind〉
bfunbind ::= funid1 = funid2 〈and bfunbind〉

Figure 3: Grammar: Basis Expressions, Declarations, and Bindings

1.5 Syntactic Restrictions

• No binding basbind may bind the same identifier twice.

• No binding bstrbind , bsigbind or bfunbind may bind the same identifier twice.

• MLB may not be cyclic; i.e., successively replacing path.mlb with its parsed BasDec must terminate.

1.6 Parsing

The static and dynamic semantics for MLB will interpret path.sml as a parsed TopDec and path.mlb as a
parsed BasDec. Parsing a TopDec takes a fixity environment as input and returns a fixity environment as
output; the output fixity environment corresponds to fixity directives introduced by and whose scope is not
limited by the parsed TopDec.

Paths and parsers are given in Figure 4. A (fixed) Parser P provides the interpretation of path.sml
and path.mlb imports. For a file extension .ext, path.ext denotes either an absolute path or a relative path

2



path.sml ∈ SourcePath
path.mlb ∈ MLBasisPath

P ∈ Parser = ((FixEnv × SourcePath)
fin−→ (FixEnv × TopDec))× (MLBasisPath

fin−→ BasDec)

Figure 4: Parser

(relative to the BasDec being parsed) to a file in the underlying file system. Paths that denote the same file
in the underlying file system are considered equal, though they may have distinct textual representations.
An implementation may allow additional extensions (e.g., .ML, .fun, .sig) in elements of SourcePath. An
implementation may additionally allow path variables to appear in paths. Parser could be refined by a current
working directory, to formally specify the interpretation of relative paths, and an path map, to formally specify
the interpretation of path variables, but the above suffices for the development in the following sections.

2 Static Semantics for MLB

2.1 Semantic Objects

The simple objects for the MLB static semantics are exactly as for Modules. The compound objects are
those for Modules, augmented by those in Figure 5. The operations of projection, injection and modification

BE ∈ BasEnv = BasId
fin−→ MBasis

M or FE ,BE ,B ∈ MBasis = FixEnv × BasEnv × Basis

Ψ ∈ BasCache = MLBasisPath
fin−→ MBasis

Figure 5: Compound Semantic Objects

are as for Modules.

2.2 Inference Rules

As for the Core and for Modules, the rules for MLB static semantics allow sentences of the form

A ` phrase −→ A′

to be inferred. Some hypotheses in rules are not of this form; they are called side-conditions. The convention
for options is as in the Core and Modules semantics.

Basis Expressions M ,Ψ ` basexp −→ M ′,Ψ′

M ,Ψ ` basdec −→ M ′,Ψ′

M ,Ψ ` bas basdec end −→ M ′,Ψ′ (1)

M (basid) = M ′

M ,Ψ ` basid −→ M ′,Ψ
(2)

M ,Ψ ` basdec −→ M1,Ψ1 M ⊕M1,Ψ1 ` basexp −→ M2,Ψ2

M ,Ψ ` let basdec in basexp end −→ M2,Ψ2

(3)

3



Comments:

(3) The use of ⊕, here and elsewhere, ensures that the type names generated by the first sub-phrase are
distinct from the names generated by the second sub-phrase.

Basis-level Declarations M ,Ψ ` basdec −→ M ′,Ψ′

M ,Ψ ` basbind −→ BE ′,Ψ′

M ,Ψ ` basis basbind −→ BE ′ in MBasis,Ψ′ (4)

M ,Ψ ` basdec1 −→ M1,Ψ1 M ⊕M1,Ψ1 ` basdec2 −→ M2,Ψ2

M ,Ψ ` local basdec1 in basdec2 end −→ M2,Ψ2

(5)

M (basid1) = M1 · · · M (basidn) = Mn

M ,Ψ ` open basid1 · · · basidn −→ M1 ⊕ · · · ⊕Mn,Ψ
(6)

B of M ` bstrbind −→ SE

M ,Ψ ` structure bstrbind −→ SE in MBasis,Ψ
(7)

B of M ` bsigbind −→ G

M ,Ψ ` signature bsigbind −→ G in MBasis,Ψ
(8)

B of M ` bfunbind −→ F

M ,Ψ ` functor bfunbind −→ F in MBasis,Ψ
(9)

M ,Ψ ` −→ {} in MBasis,Ψ
(10)

M ,Ψ ` basdec1 −→ M1,Ψ1 M ⊕M1,Ψ1 ` basdec2 −→ M2,Ψ2

M ,Ψ ` basdec1 〈;〉 basdec2 −→ M1 ⊕M2,Ψ2

(11)

P(FE of M , path.sml) = (FE ′, topdec) B of M ` topdec ⇒ B ′

M ,Ψ ` path.sml −→ (FE ′, {},B ′),Ψ
(12)

Ψ(path.mlb) = M ′

M ,Ψ ` path.mlb −→ M ′,Ψ
(13)

path.mlb /∈ Dom Ψ P(path.mlb) = basdec {} in MBasis,Ψ ` basdec −→ M ′,Ψ′

M ,Ψ ` path.mlb −→ M ′,Ψ′ + {path.mlb 7→ M ′}
(14)

Comments:

(12) Note the use of the Definition’s B ` topdec ⇒ B ′.

Basis Bindings M ,Ψ ` basbind −→ BE ′,Ψ′

M ,Ψ ` basexp −→ M ′,Ψ′ 〈M + tynames M ′,Ψ′ ` basbind −→ BE ′′,Ψ′′〉
M ,Ψ ` basid = basexp 〈and basbind〉 −→ {basid 7→ M ′}〈+BE ′′〉,Ψ′〈′〉

(15)

(Basis) Structure Bindings B ` bstrbind −→ SE

B(strid2) = E 〈B + tynames E ` bstrbind −→ SE 〉
B ` strid1 = strid2 〈and bstrbind〉 −→ {strid1 7→ E}〈+SE 〉

(16)

4



Comments:

(16) Note that bstrbind ⊂ strbind . Hence, this rule can be derived from the Definition’s B ` strbind ⇒ SE .

(Basis) Signature Bindings B ` bsigbind −→ G

B(sigid2) = Σ Σ = (T )E T ∩ (T of B) = ∅
T = tynames E \ (T of B) 〈B ` bsigbind −→ G〉

B ` sigid1 = sigid2 〈and bsigbind〉 −→ {sigid1 7→ Σ}〈+G〉
(17)

Comments:

(17) Note that bsigbind ⊂ sigbind . Hence, this rule can be derived from the Definition’s B ` sigbind ⇒ G .
As such, the following comment from the Definition applies:

The bound names of B(sigid2) can always be renamed to satisfy T ∩ (T of B) = ∅, if
necessary.

(Basis) Functor Bindings B ` bfunbind −→ F

B(funid2) = Φ Φ = (T )(E , (T ′)E ′) T ∩ (T of B) = ∅
T ′ = tynames E ′ \ ((T of B) ∪ T ) 〈B ` bfunbind −→ F 〉
B ` funid1 = funid2 〈and bfunbind〉 −→ {funid1 7→ Φ}〈+F 〉

(18)

3 Dynamic Semantics for MLB

3.1 Reduced Syntax

The syntax of MLB is unchanged for the purposes of the dynamic semantics for MLB. However, the Parser
P returns a topdec in the reduced syntax of Modules.

3.2 Compound Objects

The compound objects for the MLB dynamic semantics, extra to those for the Modules dynamic semantics,
are shown in Figure 6.

BE ∈ BasEnv = BasId
fin−→ MBasis

M or FE ,BE ,B ∈ MBasis = FixEnv × BasEnv × Basis

Ψ ∈ BasCache = MLBasisPath
fin−→ MBasis

Figure 6: Compound Semantic Objects

3.3 Inference Rules

The semantic rules allow sentences of the form

s,A ` phrase −→ A′, s′

to be inferred, where s, s′ are the states before and after the evaluation represented by the sentence. Some
hypotheses in rules are not of this form; they are called side-conditions. The convention for options is as in
the Core and Modules semantics.

5



The state and exception conventions are adopted as in the Core and Modules dynamic semantics. How-
ever, it can be shown that the only MLB phrases whose evaluation may cause a side-effect or generate an
exception packet are of the form basexp, basdec or basbind .

Basis Expressions M ,Ψ ` basexp −→ M ′,Ψ′/p

M ,Ψ ` basdec −→ M ′,Ψ′

M ,Ψ ` bas basdec end −→ M ′,Ψ′ (19)

M (basid) = M ′

M ,Ψ ` basid −→ M ′,Ψ
(20)

M ,Ψ ` basdec −→ M1,Ψ1 M ⊕M1,Ψ1 ` basexp −→ M2,Ψ2

M ,Ψ ` let basdec in basexp end −→ M2,Ψ2

(21)

Basis-level Declarations M ,Ψ ` basdec −→ M ′,Ψ′/p

M ,Ψ ` basbind −→ BE ′,Ψ′

M ,Ψ ` basis basbind −→ BE ′ in MBasis,Ψ′ (22)

M ,Ψ ` basdec1 −→ M1,Ψ1 M +M1,Ψ1 ` basdec2 −→ M2,Ψ2

M ,Ψ ` local basdec1 in basdec2 end −→ M2,Ψ2

(23)

M (basid1) = M1 · · · M (basidn) = Mn

M ,Ψ ` open basid1 · · · basidn −→ M1 + · · ·+Mn,Ψ
(24)

B of M ` bstrbind −→ SE

M ,Ψ ` structure bstrbind −→ SE in MBasis,Ψ
(25)

Inter (B of M ) ` bsigbind −→ G

M ,Ψ ` signature bsigbind −→ G in MBasis,Ψ
(26)

B of M ` bfunbind −→ F

M ,Ψ ` functor bfunbind −→ F in MBasis,Ψ
(27)

M ,Ψ ` −→ {} in MBasis,Ψ
(28)

M ,Ψ ` basdec1 −→ M1,Ψ1 M +M1,Ψ1 ` basdec2 −→ M2,Ψ2

M ,Ψ ` basdec1 〈;〉 basdec2 −→ M1 ⊕M2,Ψ2

(29)

P(FE of M , path.sml) = (FE ′, topdec) B of M ` topdec ⇒ B ′

M ,Ψ ` path.sml −→ (FE ′, {},B ′),Ψ
(30)

Ψ(path.mlb) = M ′

M ,Ψ ` path.mlb −→ M ′,Ψ
(31)

path.mlb /∈ Dom Ψ P(path.mlb) = basdec {} in MBasis,Ψ ` basdec −→ M ′,Ψ′

M ,Ψ ` path.mlb −→ M ′,Ψ′ + {path.mlb 7→ M ′}
(32)

6



Comments:

(30) Note the use of the Definition’s B ` topdec ⇒ B ′.

Basis Bindings M ,Ψ ` basbind −→ BE ′,Ψ′/p

M ,Ψ ` basexp −→ M ′,Ψ′ 〈M ,Ψ′ ` basbind −→ BE ′′,Ψ′′〉
M ,Ψ ` basid = basexp 〈and basbind〉 −→ {basid 7→ M ′}〈+BE ′′〉,Ψ′〈′〉

(33)

(Basis) Structure Bindings B ` bstrbind −→ SE

B(strid2) = E 〈B ` bstrbind −→ SE 〉
B ` strid1 = strid2 〈and bstrbind〉 −→ {strid1 7→ E}〈+SE 〉

(34)

Comments:

(34) Note that bstrbind ⊂ strbind . Hence, this rule can be derived from the Definition’s B ` strbind ⇒
SE/p, noting that the derivation may neither cause a side-effect nor generate an exception packet.

(Basis) Signature Bindings IB ` bsigbind −→ G

IB(sigid2) = I 〈IB ` bsigbind −→ G〉
IB ` sigid1 = sigid2 〈and bsigbind〉 −→ {sigid1 7→ I}〈+G〉

(35)

Comments:

(35) Note that bsigbind ⊂ sigbind . Hence, this rule can be derived from the Definition’s IB ` sigbind ⇒ G ,
noting that the derivation may neither cause a side-effect nor generate an exception packet.

(Basis) Functor Bindings B ` bfunbind −→ F

B(funid2) = (strid : I , strexp,B) 〈B ` bfunbind −→ F 〉
B ` funid1 = funid2 〈and bfunbind〉 −→ {funid1 7→ (strid : I , strexp,B)}〈+F 〉

(36)

A Derived Forms

Figure 7 shows derived forms for structure, signature, and functor bindings in MLB. These derived forms
are a useful shorthand for specifying import and export filters.

References

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David B. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

7



Derived Form Equivalent Form

(Basis) Structure Bindings bstrbind
strid 〈and bstrbind〉 strid = strid 〈and bstrbind〉

(Basis) Signature Bindings bsigbind
sigid 〈and bsigbind〉 sigid = sigid 〈and bsigbind〉

(Basis) Functor Bindings bfunbind
funid 〈and bfunbind〉 funid = funid 〈and bfunbind〉

Figure 7: Derived forms of (Basis) Structure, Signature, and Functor Bindings

8


