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Preface
This book is a study in system programming using the Standard ML
language. (In the rest of the book this language will be referred to as SML).
Standard ML is one of several languages in the ML family, the other main
one being OCaml[OCaml], but this book concentrates on Standard ML and
in particular the Standard ML of New Jersey (SML/NJ) implementation. I
will revisit some related languages in the concluding chapter.

SML belongs to the class of functional programming languages. Functional
languages are very high-level languages that are often thought of as
academic curiosities, not up to the job of real-world programming. This book
aims to show that functional languages, in particular SML, can be used for
real-world programs.

The definition of system programming is a bit fuzzy. This book will only
cover programming in the Unix operating system. In Unix, by system
programming, I mean being able to write infrastructure programs such as
daemons and utilities that interact with other programs, not necessarily
directly with the user.

The Audience
I’ve seen many postings on Usenet news groups and mailing lists by
programmers interested in using functional languages who have been
unable to get very far due to the paucity of documentation and training
material. What material on functional programming that is available tends
to be either rather academic or only at an introductory level with small toy
examples. This book aims at improving this situation by working through a
project more typical of real-world programs. In addition there will be smaller
examples in tutorial chapters.

The major project in this book is a web server. It is similar in functionality to
the early CERN server. It supports CGI programming but only does the
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Preface

original HTTP 1.0 protocol.

You, dear reader, should be a programmer familiar with Unix programming
using conventional languages such as C, C++ or Java. You have probably
been introduced to functional programming at college and retained an
interest in the subject but not had the opportunity to take it further.
Microsoft Windows programmers with some familiarity with the Posix
standards will benefit from this book too.

You should already have some familiarity with SML or other languages in
the ML family, or enough familiarity with functional languages that you can
pick up the language from a tutorial. This book is not a course on SML.
There are a number of books available that teach programming in SML.
There are also some tutorials available on the web. See Appendix A for more
information on what’s available.

The Environment
There are several implementations of SML available. The flagship
implementation is the New Jersey implementation from Bell Laboratories,
now a division of Lucent Technologies. This implementation is called
SML/NJ. It is available for a variety of machine architectures running some
flavour of Unix. It is also available for Microsoft Windows. All of the
examples in this book have been tested on Linux using version 110.0.7. You
can get it from [SML].

SML/NJ comes with a concurrent programming library known as
Concurrent ML or CML. The major project in this book will be written as a
concurrent program using CML.
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Chapter 1. Introduction

What is Functional Programming?
This section gives a brief overview of functional programming to set the
scene. Figure 1-1 shows a rather simplistic classification of some
contemporary programming languages.

Figure 1-1. A Classification of Some Languages

The conventional languages are based on the imperative programming
paradigm (which I’ll abbreviate to IMP). This means that the program
progresses by applying commands to a store containing the program
variables. The commands cause updates to the contents of the store. As the
program executes the store goes through a sequence of states.

In functional programming (which I’ll abbreviate to FP) there is no store
that is updated. The program progresses by computing new values from
existing values. There is nothing in pure FP that requires the existence of a
distinct store let alone an updatable one.

FP is further divided into two main camps, eager and lazy. Eager languages
always evaluate an expression at the earliest opportunity. All inputs to
functions are values. The ML language family is eager.
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Lazy languages delay the evaluation of an expression until its value is
actually needed. The aim is to avoid computing unneeded values. This
means that inputs to functions may be partially evaluated expressions. A
very useful consequence of lazy evaluation is that it becomes possible to deal
with data structures of infinite size, as long as you don’t need to evaluate all
of the data structure. The flagship lazy functional language is
Haskell[Haskell] with Clean[Clean] an important rival.

It might seem that there is not much difference between IMP and FP since
they both involve computing new values from existing values. The difference
is best illustrated graphically. Figure 1-2 shows a simple expression and a
graphical representation of the values and operators (functions).

Figure 1-2. The expression (x + y) * (u + v)

This expression illustrates several essential features of FP.

• Values flow between operators. The values are immutable by nature. A
value such as 3 is always 3 and never anything else.

• Operators always compute the same result given the same inputs (at least
within the same environment). If you compute 1+2 at one point in time
and do it again later you can expect to get the same result.

• The only effect of an operator is to produce an output value. Nothing else
is disturbed in the system.

Functions that always compute the same results for the same inputs are
called pure or referentially transparent. Functions that have no other effect
than to produce their output value are called side-effect free. These properties
are closely connected. If a function’s behaviour depends on some input other
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than its manifest inputs then some other function could change this other
input as a side-effect. In this case the behaviour of the function can change
at times and in ways that can be very difficult to predict and hard to debug.

FP says that these features of immutable values and pure, side-effect free
functions are so valuable that they must be preserved throughout the design
of the language.

IMP programs abandon these features as soon as the result of the expression
is assigned to a variable. A variable in IMP is a name bound to a box into
which different values can be placed at different times. This variable can be
updated by a side-effect of some function f . The behaviour of a function g in
another part of the program can depend on the value of this variable. These
two functions are communicating a value using the variable as a channel. I
call this a sneak path. The sneak path is not obvious from the source code.
There is nothing to see at the place where f is called to indicate that it is
making this communication. IMP programs are full of sneak paths. Part of
the challenge of figuring out an IMP program is tracing all the possible
sneak paths. IMP programmers are warned not to use lots of global variables
in their programs as it makes the scope of the sneak paths enormous. But
that only barely contains the problem.

A further problem with communication via a variable is that its correctness
depends on the order of operations. The call to f must be made before the
call to g or else it fails. You’ve probably had many bugs in your programs like
this where you’ve got something happening in the wrong order. I sure have.

In general, since variables go through sequences of states, getting
computation steps in the right order is essential to IMP. Controlling the
order of operation is a large part of what makes IMP difficult. You find that
you need to use a debugger to observe the order of events in the program and
the changes in variables just to figure out what is going on.

Pure FP eliminates these problems.

• The meaning of the word variable in FP is different. It is a name bound to
a value, not to a box holding a value. So the value associated with the
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variable is steady.

• All inputs to a function are made manifest in its declaration as argument
variables. For convenience a function may depend on the value of a
variable in a surrounding scope but this value must by definition be steady
during the lifetime of the function so the behaviour of the function cannot
vary over its lifetime.

• The communication between functions is more directly visible in the
source code.

• There is no order of evaluation to worry about. Referring back to Figure
1-2, you see that it doesn’t matter in what order the addition operators are
performed. The only ordering that is needed is that a function does not
compute until all its input values are available. This order can be
determined automatically by the language system so you don’t need to
worry about it at all.

These features make it a lot easier to reason rigourously about FP code. A
simple demonstration of the difficulty with IMP is the mathematical rule x
+ x = 2x . You would think that any logical system that violates even as
simple a rule as this is going to be hard to work with. So consider if this C
expression can be true: getchar() + getchar() == 2*getchar() !

Unfortunately, while pure FP is very nice in theory, it has its problems in
practice. Some of these are described in the next sections.

Pure FP and I/O
The major problem with pure FP is input/output (I/O). Except in the
simplest cases where a program can be cast as a function transforming one
file into another, I/O is a side-effect. For example, an FP program could have
sneak-paths by writing to a file and reading it back again later. The outer
world, the operating system, is a vast mess of state that the program has to
interact with.

22



Chapter 1. Introduction

There are a variety of techniques that have been developed in recent years to
find a way to get pure FP and I/O to blend together. The most advanced can
be found in the Haskell and Clean languages. I won’t go into the details
except to mention the idea of lazy streams.

A lazy stream is an infinite list of values that is computed lazily. The stream
of keystrokes that a user presses on the keyboard can be represented as an
infinite (or arbitrarily long) list of all of the keystrokes that the user is ever
going to press. You get the next keystroke by taking the head element of the
stream and saving the remainder. Since the head is only computed lazily, on
demand, this will result in a call to the operating system to get the next
keystroke.

What’s special about the lazy stream approach is that you can treat the
entire stream as a value and pass it around in your program. You can pass it
as an argument to a function or save the stream in a data structure. You can
write functions that operate on the stream as a whole. You can write a word
scanner as a function, toWords , that transforms a stream of characters into
a stream of words. A program to obtain the next 100 words from the
standard input might look something like

apply show (take 100 (toWords stdIn))

where stdIn is the input stream and take n is a function that returns the
first n elements in a list. The show function is applied to each word to print
it out. The program is just the simple composition of the functions. Lazy
evaluation ensures that this program is equivalent to the set of nested loops
that you would write for this in an IMP program. This is programming at a
much higher level than you typically get with IMP languages.

But we aren’t using Haskell or Clean. The approach of SML to I/O is to
revert to impure behaviour. You can use a read function and it will return
different values on each call. You can use a print function and it will have
the side-effect of writing to a file. You can even have imperative variables
with assignment statements. These are called reference types. They provide
you with a box into which you can store different values at different times.
So this means that the sequencing of statements raises its ugly head in SML.
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With SML you can use a mixture of FP and IMP but naturally the IMP
should be kept to a minimum to maximise the advantages of FP. When we
get into concurrent programming later on we’ll look at ways of blending the
two. Communication between threads or coroutines can be used to emulate
lazy streams.

Pure FP and Plumbing
One of the awkward problems with pure FP is that all input values to a
function must be passed in as arguments at some point. This creates the
plumbing problem. If you want to pass a value to some point in the program
it must be plumbed through all of the functions in between which can lead to
a lot of clutter. This problem can be reduced a bit by taking advantage of
nested functions and scoping. In the following code

fun f a b c =
let

fun g x count =
(

... g (x-1) (count+1) ...
)

in
g b 1

end

the values a and c are available to the function g without having to be
passed as arguments. But even doing this it can be sometimes be quite
awkward plumbing everything through. In practice, the careful use of some
global imperative variables can improve a program’s readability a lot, as
long as we don’t have sneak paths as an essential feature of an algorithm.

A second part to the plumbing problem is the chaining of values from one
function to the next. You often have code looking something like

fun f a =
let

...
val (x, s1) = g a []
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val (y, s2) = g b s1
val (z, s3) = g c s2
...

in
...

end

Here the functions are computing values x , y and z while passing some state
values between the calls. There is no easy solution to this in SML. The
Haskell language has a design pattern called a monad which neatly
simplifies this plumbing. In SML you would have to roll your own monads
which is messy enough that you might as well just grin and bear it.
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Chapter 2. Hello World
In this chapter I will show the basics of running simple SML programs. I will
start with the classic hello world program to show how to build a complete
runnable program. Then I will move on to more elaborate programs
following the classic development with programs like echo and word count.

During this development I will stop to examine some of the programming
idioms that are peculiar to functional programming and that often give an
imperative programmer difficulties. I will pay particular attention to loops,
using recursion, which is one of the biggest differences between imperative
and functional programming.

By the time you get here you should have studied one of the texts or tutorials
on SML cited in Appendix A.

All programming examples are available as complete source files that you
can run. I only cite pieces of each program in the text. You should also read
the complete programs.

Assembling the Hello World Program
The least you have to do to make SML say "hello world" is to use the top
level. This is a classic Read-Eval-Print loop where you type in an SML
declaration and it is immediately evaluated. For example

> sml
Standard ML of New Jersey, Version 110.0.7
- print "hello world\n";
hello world
val it = () : unit
- ^D

You type in the print expression at the prompt and terminate it with a
semicolon. It gets evaluated which has the side-effect of printing the string.
Then the compiler shows the return value which is () of type unit and is
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assigned to the special variable it . The type unit plays the same role as
void in C. Use a Control-D to exit from the compiler.

But this doesn’t get you a program that you can run as a command. For this
you need to do some more work. The SML/NJ system can save a program in
an (almost) ready-to-run form called a heap file. The steps it goes through
are shown in Figure 2-1

Figure 2-1. Compiling and Running a Program

When you run the sml command you start off with the runtime, which is a C
executable, and a heap containing the compiler. The compiler compiles your
source file to one or more modules, here A, B and C, which are left in the
heap. Then you arrange for the contents of the heap to be dumped into a file
using the built-in exportFn function. Just before the heap is dumped a
garbage collection is performed which removes all objects in the heap that
are not reachable from your program. This will get rid of the compiler.

Later you can run your program by starting another copy of the runtime and
loading your program into its heap.

You can find out where the runtime executable is on your computer by
looking for where the sml command is kept. In my installation I have these
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files.

> which sml
/usr/local/bin/sml

> ls -l /usr/local/bin/sml
... /usr/local/bin/sml -> /src/smlnj/current/bin/sml

> cd /src/smlnj/current/bin
> ls -a
./
../
.arch-n-opsys*
.heap/
.run/
.run-sml*
ml-burg -> .run-sml*
ml-lex -> .run-sml*
ml-yacc -> .run-sml*
sml -> .run-sml*
sml-cm -> .run-sml*

The sml command leads back to the .run-sml shell script. This script runs
the executable in the .run subdirectory with a heap file that contains the
compiler, found in the .heap subdirectory.

To build your own program you need to duplicate this arrangement. Here is
a basic hello world program.

structure Main=
struct

fun main(arg0, argv) =
(

print "hello world\n";
OS.Process.success

)

val _ = SMLofNJ.exportFn("hw", main)
end

All compiled programs are divided into modules called structures. Here I’ve
called it Main but the name doesn’t matter. After the structure is compiled
each of its declarations will be evaluated. Evaluating the function main
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doesn’t do anything but say that this is a function. But when the val
declaration is evaluated the exportFn function (in the built-in structure
SMLofNJ) will be called. This will write the heap into a file named hw with a
suffix that depends on the kind of operating system and architecture you are
using. For Linux on ix86 the file name will be hw.x86-linux .

The second argument to exportFn names the function that will be called
when the heap file is read back in. This function must return a success or
fail code which becomes the exit code (0 or 1) of the program. These codes are
defined in the built-in OS.Process structure.

The next step is to compile this program. The SML/NJ system comes with a
built-in compilation manager that does a job similar to the Unix make
command. First you need a CM file that describes what you are going to
compile. Call it hw.cm . The least it needs to contain is

group is
hw.sml

Then compile the program as follows1

> CM_ROOT=hw.cm sml
Standard ML of New Jersey, Version 110.0.7, September 28, 2000
- CM.make();
[starting dependency analysis]
[scanning hw.cm]
[checking CM/x86-unix/hw.cm.stable ... not usable]
[parsing hw.sml]
[Creating directory CM/DEPEND ...]
[dependency analysis completed]
[compiling hw.sml -> CM/x86-unix/hw.sml.bin]
[Creating directory CM/x86-unix ...]
[wrote CM/x86-unix/hw.sml.bin]
GC #1.1.1.1.1.10: (10 ms)
write 1,0: 1356 bytes [0x40cd0000..0x40cd054c) @ 0x1000
........ stuff deleted
write 5,0: 28 big objects (271 pages) @ 0x15410

The most convenient way to pass in the name of the CM file is through the
CM_ROOTenvironment variable. (If you don’t set CM_ROOTthen a default of
sources.cm is used.) At the prompt type CM.make(); . This runs the
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compilation manager. Don’t forget the semicolon. You will be prompted until
you enter it.

The messages you get show the compilation manager figuring out that it
needs to recompile the source file. It then caches the compiled form in the
CM/x86-unix/hw.sml.bin file. Then the export step writes lots of stuff to
the heap file.

Now that you have the heap file you need a shell script to run it. Here is a
generic script.

heap=‘basename $0‘
install=.
smlbin=/src/smlnj/current/bin

exec $smlbin/.run-sml @SMLload=$install/${heap}.x86-linux "$@"

This script starts the runtime and specifies the heap file to load. This is
taken from the name of the script so that the same script can be used for
different programs by adding links or just copying it. The install variable
allows you to move the heap file to some installation directory. Any command
line arguments will be passed through to the SML main function.

Now you can run it

> hw
hello world

Don’t be too worried about the large size of the heap file for such a small
program. Some people argue that there is something wrong with a language
if a program as small as this doesn’t produce a correspondingly small
executable and cry Bloat!. But few people write hello world programs. The
overhead in the heap file becomes much more modest in proportion when you
develop programs of a serious size.

That’s a fair bit of work to get a single program going but you only have to do
it once and copy it as a template for future programs.
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The echo Program
The echo program will just echo its arguments. It’s a simple extension to
hello world that demonstrates using the command line arguments. Here is
the program.

structure Main=
struct

fun main(arg0, argv) =
(

case argv of
[] => ()

| (first::rest) =>
(

print first;
app (fn arg => (print " "; print arg)) rest;
print "\n"

);

OS.Process.success
)

val _ = SMLofNJ.exportFn("echo", main)
end

The name of the program is supplied to the main function as the first
argument, arg0 of type string . This is the same as argv[0] in a C main
function. The remaining command line arguments are supplied as a list of
strings in argv .

The case expression reads as follows. If the argument list is empty then
print nothing. Otherwise if it is non-empty then print the first one and then
print the rest of them preceded by a single blank. The app applies the
function to each of the strings in the list rest . This function prints the blank
and then the argument.

Be careful that you only put semicolons between imperative statements. If
you were to put a semicolon after the new-line print you would get this error
message from the compiler.
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echo.sml:14.2 Error: syntax error: inserting EQUALOP

This is because the parser in the compiler attempts to correct syntax errors
in order to continue compiling for as long as possible. Sometimes this works.
In this case it decides that it needs another expression after the semicolon
and chooses an equals operator to be the expression. The error message
points to the line after where the surplus semicolon is, here line 14, character
2. See Appendix B for more information on the compiler’s error messages.

For this program I’ve used a more elaborate run script since there is a bug in
the standard one in that it does not pass empty command line arguments
through to the SML program. For the echo program to be exactly right we
need to see the empty arguments too. This script copies in more of the
SML/NJ .run-sml script.

install=.
smlbin=/src/smlnj/current/bin

arg0=$0
cmd=‘basename $0‘

ARCH_N_OPSYS=‘$smlbin/.arch-n-opsys‘
if [ "$?" != "0" ]; then

echo "$cmd: unable to determine architecture/operating system"
exit 1

fi
eval $ARCH_N_OPSYS
suffix=$ARCH-$OPSYS

exec $smlbin/.run/run.$ARCH-$OPSYS @SMLcommand=$arg0 \
@SMLload=$install/${cmd}.$HEAP_SUFFIX "$@"
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Loops and Recursion

The Basics
The typical imperative loop idiom is demonstrated by this C function for
finding the sum of the nodes in a list.

typedef struct node {
int value;
struct node* next;

} Node;

int
sumlist(const Node* the_list)
{

int sum = 0;
Node* l;

for(l = the_list; l != 0; l = l->next)
{

sum = sum + l->value;
}

return sum;
}

This shows two major features of imperative loops. There is a loop variable,
here l , that passes through a sequence of values, one for each iteration.
There are values that are passed from one iteration to the next through one
or more other variables, here just sum. These are global to the body of the
loop in order to persist from one iteration to another. So the iterations are
communicating with each other via side-effects.

Both of these features are anathema to functional programming. You can’t
have variables changing from one iteration to the next like that. So for and
while loops and anything similar is out of the question.

Instead in functional programming, loops are done with recursion within a
function. The idea is that the computation within the recursive function
represents the computation of one iteration of the loop. The next iteration is
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started by calling the function again. Values are communicated between two
iterations via the arguments passed to the function. The rebinding of the
argument variables to different values on different calls is the closest you
will get to changing the value of a variable in pure functional programming.

Here is the same function in SML. In the first version I’ve written the case
expression out in full.

fun sumlist the_list =
(

case the_list of
[] => 0

| (v::rest) => v + (sumlist rest)
)

It can be made neater by merging the case expression with the function
definition.

fun sumlist [] = 0
| sumlist (v::rest) = v + (sumlist rest)

The algorithm is described by the following specification.

To find the sum of the elements in a list:

1. If the list is empty then define the sum to be 0.

2. If the list is not empty then we can split it into a first element and some
remaining elements. The sum is the value of the first element plus the
sum of the remaining elements.

This is a "divide and conquer" style of specification. We reduce the problem
of summing the list to a smaller problem by splitting it into two pieces. SML
provides a cheap mechanism to split the first element off from a list. Figure
2-2 shows this division.
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Figure 2-2. Summing a list by Divide and Conquer.

To find the sum of the list [1, 2, 3, 4, 5] we reduce it to the problem of
finding the sum of the list [2, 3, 4, 5] and adding 1 to it. This continues
until we get to an empty list in which case its sum is known trivially. Then
we can complete the additions.

The problem with this algorithm is that the addition cannot be completed
until the sum of the remaining elements is known. This leaves a trail of
pending additions which is as long as the list itself. Each pending addition
means there is an incomplete function call taking up stack space. So the
stack space consumed is proportional to the length of the list. The iterative
algorithm in C above takes up constant stack space. When imperative
programmers point to the superiority of iterative loops this is a major
complaint they make against recursion.

But this problem is not a problem with recursion itself as much as how it is
implemented in imperative languages like C. We can sum the list with
recursion in constant stack space too using tail recursion.

Tail Recursion
A tail call to a function is one that is the last step made in the execution of
the calling function. In other words, the return value of the calling function
will unconditionally be the return value of the called function. Since there
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will be no more execution in the calling function its stack space can be
reclaimed before the tail call. This eliminates the accumulation of stack
space during the loop. This is called the tail call optimisation.

Here is the same function in SML taking care to use tail recursion.

fun sumlist the_list =
let

fun loop [] sum = sum
| loop (v::rest) sum = loop rest (sum+v)

in
loop the_list 0

end

The first argument to the loop function is the remainder of the list to be
counted. The sum variable accumulates the result. The initial call to loop
supplies initial values for these variables. Each subsequent call to the
function passes updated values for these variables. When the remainder of
the list is empty then the value of the sum variable is the number of list
elements. Figure 2-3 shows the function calls in a data flow diagram.

Figure 2-3. Tail Recursion as Data Flow

Each iteration of the loop function is an operation that shortens the list by
one and increments the sum. When the list is reduced to an empty list then
the accumulated sum is the answer.

I emphasised the word unconditionally in the definition of tail calls above
because sometimes what is a tail call can be obscured. For example if there is
an exception handler surrounding the tail call then this implies that the
calling function may sometimes still have work to do handling an exception
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from the called function so it can’t be a tail call. You may need to watch out
for this in loops.

Tail Recursion as Iteration
The first reaction of a C programmer to using recursion everywhere is to
object to the performance of using recursion instead of iteration. But the
programmer’s intuition on what is expensive and what isn’t is based on how
C works and is pretty much useless when it comes to functional
programming because it works so differently.

In this section I want to emphasise the equivalence of tail recursion and
iteration by working back from recursion to iteration. This will not only
show that tail recursion is as efficient as iteration but will also provide an
intuition that will be useful for bringing across imperative idioms to
functional programming.

If you have studied a little assembly language you will know of the variety of
machine instructions for jumping around in a program. The Intel
architecture has the simple unconditional JMPinstruction. This corresponds
to the goto statement in C. You would expect that a goto translates to a
single JMPinstruction. For calling functions there is the CALL instruction
which works like JMPexcept that it saves a return address on the stack. This
allows the calling function to continue execution after the called function has
finished.

But when we have tail recursion there is nothing to return to. By definition
the calling function has completed. So instead of using a CALL, we should be
able to use a JMPinstruction to implement the tail call. In other words, a tail
call is equivalent to a goto .

I’ll demonstrate this equivalence by manually translating the sumlist
function to C. Here is the original in SML.

fun sumlist the_list =
let
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fun loop [] sum = sum
| loop (v::rest) sum = loop rest (sum+v)

in
loop the_list 0

end

In C, using the Node type in the section called The Basics, I get the
(somewhat literal) code:

int
sumlist(const Node* the_list)
{

const Node* list; /* args to loop */
int sum;

list = the_list; /* args to the first call */
sum = 0;
goto loop; /* a tail call to loop */

loop:
if (list == 0)
{

return sum; /* value returned from loop */
}
else
{

int v = list->value;
const Node* rest = list->next;

list = rest; /* new args for the tail call */
sum = sum + v;
goto loop;

}
}

Since all calls to loop are tail calls I can use goto s instead of function calls
and use a label for loop . This translation simultaneously incorporates the
tail call optimisation and the inlining of the loop function. A good SML
compiler can be expected to perform these optimisations as a matter of
course and generate machine code as good as C for the sumlist function.

Just to belabor the point, Figure 2-4 shows the equivalence graphically.
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Figure 2-4. Tail Recursion as Iteration

Part (a) of the figure shows a function f in a recursive loop being called. In
the middle of its execution it calls itself recursively. This continues until one
of the invocations chooses not to call itself. Then the invocation returns and
the second half of the previous invocation executes. This continues until all
invocations have returned. Part (b) shows what we have with tail recursion.
There is no second half, the returned value from one invocation becomes the
returned value from the previous one and eventually the returned value
from the entire function. Looking at the diagram we see that the cascade of
returns is redundant. In part (c) the last invocation returns directly for the
whole loop. With a bit of inlining the recursion has become just a sequence of
executions of the body of the function f joined by goto statements, in other
words conventional imperative iteration.
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Using the Fold Functions
The structure of the code in Figure 2-3 is such a common pattern that there
is a standard built-in function to implement it. It is called List.foldl , but
it is also directly callable as foldl 2. Actually there are two variants, foldl
and foldr , depending on whether you want to read the list from left to right
or right to left. Normally you should read the list left to right for efficiency.

The function for summing the list using foldl can now be written

fun sumlist the_list = foldl (fn (v, sum) => v + sum) 0 the_list

The first argument to foldl is a function that performs the body of the loop.
It takes a pair of arguments, the first is a value from the list and the second
is the accumulated value. It must then compute a new accumulated value.
The second argument to foldl is the initial value for the accumulator and
the third is the list. The foldl takes care of all of the iteration over the list.

In general the expression foldl f i l corresponds to the data flow
diagram in Figure 2-5. In this diagram I have represented the calling of the
function f by an @ operator. This applies the function to the pair of the list
element and the accumulated value. These two values are always supplied in
a single argument as a tuple with the list element first and the accumulated
value second.

Figure 2-5. The Data Flow for foldl

There are further abbreviations you can do in the foldl call. A function that
just adds two integers together can be derived directly from the addition
operator.

fun sumlist the_list = foldl (op +) 0 the_list
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The notation (op +) makes the addition operator into a function that can be
passed around like any other. The type of the function is declared in the
standard INTEGERsignature as (int * int) -> int which means it
takes a pair of integers as its argument, just as needed by foldl .

This notation will only work if the compiler can work out from the context
that it is the integer addition operator that is needed, rather than real or
some other type. It can do this in this case because the initial value is known
to be the integer zero. If you wrote foldl (op +) 0.0 the_list then it
would know to use the real addition operator. You can’t write a sum function
that can sum either lists of integers or lists of reals.

The order of the arguments to foldl is meaningful. You can use currying to
omit arguments from the right to create partially satisfied functions. For
example the expression foldl (op +) 0 represents a function that will
take a list and return its sum. You can write

val sumlist = foldl (op +) 0

which binds the name sumlist to this partially satisified function. When
you write sumlist [1, 2, 3] you satisfy all of the arguments for the
foldl and it executes. Similarly you could define

val accumlist = foldl (op +)
val sumlist = accumlist 0

and if you wrote accumlist x [1, 2, 3] you would be accumulating the
sum of the list elements onto the value of x . (The compiler will default
accumlist to do integer addition in the absence of any type constraints
saying otherwise).

As a general rule when choosing the order of arguments, if you want to make
currying useful, then place the argument that varies the least first and the
most varying last. The designers of foldl judged that you are more likely to
want to apply the same function to a variety of lists than apply a variety of
functions to a particular list. You can think of the first arguments as
customisation arguments so that foldl (op +) 0 customises foldl to
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sum lists as opposed to foldl (op *) 1 which multiplies list elements
together.

Tail Recursion for Finite State Machines
A finite state machine, or FSM, is a common design technique for describing
repetitive behaviour. The FSM passes through a series of discrete states in
response to its inputs. As it makes the transition from one state to another it
performs some output action. This may continue forever or there may be an
end state. The word finite in the name refers to the finite number of different
discrete states that the machine can be in, not how long the machine runs
for.

Figure 2-6 shows a FSM to count words in text. There are two operational
states: in means the machine is inside a word, out means the machine is
outside a word. The ENDstate stops the machine. The text is supplied as a
sequence of characters. Each character causes a transition to another state,
which may be the same as the previous state.

If the machine is in the out state and it gets a white space character,
represented by ws in the figure, then it stays in the out state. If it gets a
non-white space character (and it’s not the end of data, eod ) then it changes
to the in state because it has entered a word. A word is completed when
there is a transition from the in state back to the out state upon a white
space character. The [incr] notation means that the count of words is
incremented during the transition.

If the machine gets an end-of-data condition then it stops at the ENDstate. A
word has to be counted if it is was in a word at the time.
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Figure 2-6. Counting Words with a FSM

If you were to write this FSM in C you might implement the states with
small pieces of code joined with goto statements. It might be something like:

int
word_count(const char* text)
{

int count = 0;
char c;

out:
c = *text++;
if (!c) goto eod;
if (!isspace(c)) goto in;
goto out;

in:
c = *text++;
if (!c)
{

count++
goto eod;

}
if (isspace(c))
{

count++;
goto in;

}
goto in;

eod:
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return count;
}

(This is a bit ugly but it’s a literal translation of the design and it should
generate nice fast machine code if you care.)

Now that we know that tail recursion in functional programming is
equivalent to goto in imperative programming we can write the same
algorithm directly in SML. The set of states will correspond to a set of
mutually tail-recursive functions. Here is the word counter function.

and word_count text =
let

fun out_state [] count = count
| out_state (c::rest) count =
(

if Char.isSpace c
then

out_state rest count
else

in_state rest count
)

and in_state [] count = count + 1
| in_state (c::rest) count =
(

if Char.isSpace c
then

out_state rest (count + 1)
else

in_state rest count
)

in
out_state (explode text) 0

end

The two state functions are part of a mutually recursive pair joined by the
and keyword. For convenience I’ve represented the text as a list of
characters. The built-in explode function makes a list of characters from a
string and the built-in Char.isSpace tests if the character is white space.
The output from the loop is in the accumulator count . It gets incremented
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whenever we leave the in state. In place of an explicit eod state we just
return the accumulated count.

Here is the main function that calls the word_count function.

fun main(arg0, argv) =
let

val cnt = word_count "the quick brown fox";
in

print(concat["Count = ", Int.toString cnt, "\n"]);
OS.Process.success

end

It counts the word in the foxy message and prints the result. To print I’ve
used the built-in concat function which concatenates a list of strings into a
single string and Int.toString to make a string from an integer.

Alternatively you can represent the state by a state variable and have a
single loop. The word_count function then becomes:

and word_count text =
let

datatype State = In | Out

fun loop Out [] count = count

| loop Out (c::rest) count =
(

if Char.isSpace c
then

loop Out rest count
else

loop In rest count
)

| loop In [] count = count + 1

| loop In (c::rest) count =
(

if Char.isSpace c
then

loop Out rest (count + 1)
else

loop In rest count
)
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in
loop Out (explode text) 0

end

In this code I’ve used a datatype to define some states. This use of a datatype
is equivalent to an enumeration type in C or C++. Apart from that there is
little difference in such a small example. We now have just one tail-recursive
function that takes a current state argument. I’ve used pattern matching in
the function definition to recognise all of the combinations of state and
character list.

Concerning performance, using explode requires copying the string to a list
before counting. If you were dealing with long strings and were worried
about the amount of memory needed for two copies then you could try just
subscripting the string using String.sub . This may well run slower though
since there is bounds-checking on each subscript call.

This word counting example is just an example to demonstrate a simple
state machine. It’s a bit of overkill. The shortest piece of code to count words
in a string uses String.tokens :

fun word_count text = length(String.tokens Char.isSpace text)

The getopt Programs
The getopt program will fetch the options from the command line and check
that the required options are present. I’ll implement this in several different
ways to demonstrate some programming techniques.

The goal is to to recognise the following options.

-v
–verbose

This is optional.
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–width width

This is required. It sets the width.

–height height

This is required. It sets the height.

-h

This prints a help message.

files

The remaining arguments are file names.

Our little program will print the file names. If the verbose option is given
then it will also print the width and height. The usage will be:

Usage: [-h] [-v|-verbose]
[-width width]
[-height height]
files

Mostly Functional
This first version, getopt1.sml , is in a mostly-functional style. The
deviation is in the use of an exception to abort the program with an error
message.

The first part of the program has some type definitions for documentation.3

(* The options will be returned as a list of pairs
of name and value. We need to use an option type for
the value so that we can distinguish between a missing
value and an empty value.

*)
type Option = string * string option

(* The result from the command line parsing will
be a list of file names and a set of options.
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*)
type CmdLine = (Option list) * (string list)

(* This exception will bomb with a usage message. *)
exception Usage of string

I’ve defined Option to be a pair of a string for the name of the option and an
optional string for its value. The name will be an internal canonical name.
The CmdLine type is to describe the result from parse_cmdline , namely a
list of options and a list of files.

I’ve defined an exception Usage which carries a message. I use this to abort
the program. The exception is caught when it aborts the main function and
prints a message on stdErr . The exception handler returns the failure code
so that the program exits with an exit code of 1.

The next section of the program scans the arguments.

fun parse_cmdline argv : CmdLine =
let

fun loop [] opts = (opts, []) (* no more args *)

| loop ("-h"::rest) opts =
loop rest (("help", NONE) :: opts)

| loop ("-v"::rest) opts =
loop rest (("verbose", NONE) :: opts)

| loop ("-verbose"::rest) opts =
loop rest (("verbose", NONE) :: opts)

| loop ("-width"::rest) opts =
get_value "width" rest opts

| loop ("-height"::rest) opts =
get_value "height" rest opts

| loop (arg::rest) opts =
(

if String.sub(arg, 0) = #"-"
then

raise Usage (concat["The option ", arg,
" is unrecognised."])

else
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(opts, arg::rest) (* the final result *)
)

and get_value name [] opts =
(

raise Usage (concat[
"The value for the option ", name, " is missing."])

)

| get_value name (v::rest) opts =
(

loop rest ((name, SOME v) :: opts)
)

in
loop argv []

end

The parse_cmdline function scans the arguments in an inner loop. I’ve got
a type constraint on the expression pattern parse_cmdline argv to
indicate that its resulting value is of the type CmdLine . Although this is not
strictly necessary it aids readability. It can also make it easier to find the
location of type errors by putting in explicit points where the type is known.
(See Appendix B for a discussion on type errors). If you wanted a type
constraint on the argv argument then you would need to put it in
parentheses i.e. (argv: string list) .

I’ve used literal strings in the binding patterns for conciseness. So for
example the second variant of the loop function says that if the argument
list starts with a "-h" then continue looping over the rest of the arguments
with the options table in opts augmented with the pair ("help", NONE) .

The first variant catches the case of running out of arguments while
scanning for options. In this case I return the options that I have and the list
of files is empty.

To handle an option which requires a value I’ve used a separate function,
get_value . It looks at the first of the rest of the arguments. If the rest of
the arguments are empty then the value is missing. If present then I add it
to the opts table and continue the loop. Note that with an option type, a
value that is present is tagged with the SOMEdata constructor. This
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algorithm will treat the case of -width -height as a width option having
the value -height .

The get_value function must be joined to the loop function with the and
keyword to make the forward reference to get_value in loop legal. The
two are mutually recursive functions.

The last variant of the loop function catches all the arguments that don’t
match any of the preceding option strings. Remember that in cases the
variants are matched in order from first to last. An identifier in a binding
pattern, here arg , will match any value. I need to check if the value starts
with a hyphen in which case it is an unrecognised option. I’ve used the
String.sub function which subscripts a string to get a character. The first
character is at index 0. The #"-" notation is the hyphen character. If the
argument does not start with a hyphen then I return the final result which
is the options table and the rest of the arguments, not forgetting that arg is
one of them.

I’ve used parentheses to bracket the body of each variant although in this
code they are redundant. I find that I get fewer syntax surprises this way as
the code gets more complex. Imagine a body containing a case expression!

The next section of the program has some utility functions to deal with
option tables.

and find_option opts name : (string option) option =
(

case List.find (fn (n, v) => n = name) opts of
NONE => NONE

| SOME (n, v) => SOME v
)

and has_option opts name =
(find_option opts name) <> NONE

and require_option opts name and_value : string =
(

case find_option opts name of
NONE => raise Usage (concat[
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"The option ’", name,
"’ is missing."])

| SOME NONE => (* found but has no value *)
(

if and_value
then

raise Usage (concat[
"The option ’", name, "’ is missing a value."])

else
""

)

| SOME (SOME v) => v (* found and has a value *)
)

The find_option searches the table for a given name. I’ve used the
List.find function which finds the first entry in the option list that
satisfies the predicate function which is the first argument to List.find .
Remember that each member of the list is a pair of name and value. So the
argument to the predicate is a pair, matching with (n, v) . The predicate
tests if the name field is the same as the supplied name.

The option tables have a subtle property. I built them in reverse by pushing
new options onto the front of the list. So if there are duplicate options then
the first one found will be the last on the command line. I either should not
rely on this or I should document it loudly.

The result from the List.find will be of the type Option option . That is
it will be NONEif the option was not found or else some name-value pair,
SOME (n, v) . I’ve decided that I only want to return the value. But I have
to indicate if the value was found or not in the options table so I wrap it in
another level of option .

The has_option just tests if find_option returns a non-NONE value. The
equality and inequality (<>) operators are available for the type T option
if they are available for a type T.

The require_option function checks that an option is present in the table.
If the and_value flag is true then I also require it to have a value. If it has a
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value then I return it. Because every if expression must have both a then
and an else part I can’t avoid covering the case of an option not having a
value and not needing to, even though I don’t use this case in the program.
Better safe than sorry.

The final part of the program is the main function. It should be fairly
straightforward.

fun main(arg0, argv) =
let

val (opts, files) = parse_cmdline argv

val width = require_option opts "width" true
val height = require_option opts "height" true

fun show_stuff() =
(

print "The files are";
app (fn f => (print " "; print f)) files;
print ".\n";

if has_option opts "verbose"
then

print(concat[
"The width is ", width, ".\n",
"The height is ", height, ".\n"
])

else
()

)
in

if has_option opts "help"
then

print "some helpful blurb\n"
else

show_stuff();

OS.Process.success
end
handle Usage msg =>
(

TextIO.output(TextIO.stdErr, concat[msg,
"\nUsage: [-h] [-v|-verbose] [-width width]",
" [-height height] files\n"]);

OS.Process.failure
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)

Observe again how all if expressions must have both a then and an else
part and each part must return a value. Since the print function has unit
as a return value then the else part must too. The () is the notation for the
one and only value of the unit type. You can interpret it as "do nothing".

In a real program of course I would call some function to do the work of the
program and pass it the options and the file names. But the rest of the code
of the program may be quite large and it will only refer to the options in a
few places scattered throughout the program. It would be awkward to pass
the options table all the way through the program just to be read in a few
places. The program would quickly become difficult to read. Instead I will
cheat and put the options into a global table. Since they are used read-only
and are set before the body of the program is run this won’t break referential
transparency. The program will still be as good as pure.

The way to put values into global variables in SML is to use global reference
values. Reference values emulate the variables of imperative programs. But
we don’t have to get our hands dirty dealing with them. The SML/NJ utility
library includes a hash table module that uses reference values internally to
store its contents imperatively. In the next section I show how to set up one
of those.

Using a Hash Table
The SML/NJ utility library defines a generic hash table using imperative
storage so that you can update its contents. (See Chapter 5). The table is
generic over the key type. You need to supply a specification of the key type
and its properties to make an instance of the table type. Then you can create
values of the table type. All of the values have the same key type but each
can have a different content type, since the table is polymorphic in this type.
But all entries in a particular table have the same content type. SML does
not do dynamic typing or subtyping.
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The generic hash table is defined by this functor from the
hash-table-fn.sml file in the SML/NJ library.

functor HashTableFn (Key : HASH_KEY) : MONO_HASH_TABLE

The functor takes a Key structure as an argument and produces a hash table
structure. The HASH_KEYsignature describes what the Key structure must
tell the functor. Observe that in signatures, functions are described as a
value of a function type.

signature HASH_KEY =
sig

type hash_key

val hashVal : hash_key -> word
(* Compute an unsigned integer from a hash key. *)

val sameKey : (hash_key * hash_key) -> bool
(* Return true if two keys are the same.

* NOTE: if sameKey(h1, h2), then it must be the
* case that (hashVal h1 = hashVal h2).
*)

end (* HASH_KEY *)

For the option table I want strings for keys. So I’ve defined a string table key
with the following structure. The hash function comes from another library
module in the hash-string.sml file.

structure STRT_key =
struct

type hash_key = string
val hashVal = HashString.hashString
fun sameKey (s1, s2) = (s1 = s2)

end

Now I can assemble these to make a module I call STRTthat implements a
hash table from strings to some content type. I’ve also defined a useful
exception that will be used later for when table lookups fail.

structure STRT = HashTableFn(STRT_key)
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exception NotFound

This structure conforms to the MONO_HASH_TABLEsignature. Here MONO
means it is monomorphic in the key type. This signature describes all of the
types and values (including functions) that the hash table structure makes
public. Here is a part of this signature containing the features that I use
often.

signature MONO_HASH_TABLE =
sig

structure Key : HASH_KEY

type ’a hash_table

val mkTable: (int * exn) -> ’a hash_table
(* Create a new table; the int is a size hint

* and the exception is to be raised by find.
*)

val insert: ’a hash_table -> (Key.hash_key * ’a) -> unit
(* Insert an item. If the key already has an item

* associated with it, then the old item is
* discarded.
*)

val lookup: ’a hash_table -> Key.hash_key -> ’a
(* Find an item, the table’s exception is raised

* if * the item doesn’t exist
*)

val find: ’a hash_table -> Key.hash_key -> ’a option
(* Look for an item, return NONE if the item

* doesn’t exist
*)

val listItemsi: ’a hash_table -> (Key.hash_key * ’a) list
(* Return a list of the items (and their keys) in

* the table
*)

end
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This shows that the table structure exports a copy of the Key structure that
defined it. This is good practice as it can be useful to get access to the hash
function of the table.

So now I have the type ’a STRT.hash_table which maps from string keys
to some content type represented by the type variable ’a . I can create a
table from strings to strings like this.

type OptionTable = string STRT.hash_table

val option_tbl: OptionTable = STRT.mkTable(101, NotFound)

The type constraint on the table value settles the type of the table
immediately to save the compiler and the reader having to figure it out.

Getopt with a Hash Table
With these hash table tools I can go on to write a neater getopt program,
called getopt2.sml . I’m in the habit of putting useful things like the string
table structure into a common module which can be used throughout a
project. I put global variables like the option table into their own separate
module. These would normally go into separate files. In the source code for
this program I’ve put them all in the same file. Here is the common module
which exports all of its declarations.

structure Common =
struct

(*---------------------------------*)
(* A hash table with string keys. *)

structure STRT_key =
struct

type hash_key = string
val hashVal = HashString.hashString
fun sameKey (s1, s2) = (s1 = s2)

end

structure STRT = HashTableFn(STRT_key)
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exception NotFound

(*---------------------------------*)

end

Then I define a signature for the global module to constrain what it exports.
It’s got a basic API for setting and testing options. In keeping with the
previous getopt program an option value is an optional string so that I can
tell the difference between a missing option value and an empty option value.

signature GLOBAL =
sig

type Option = string option

(* Add an option to the table silently overriding
an existing entry.

*)
val addOption: (string * Option) -> unit

(* Test if an option is in the table. *)
val hasOption: string -> bool

(* Get the value of an option if it exists. *)
val getOption: string -> Option option

end

Next I define the global module. The open declaration imports everything
from Commonand makes its names directly visible. Note that there must be
a definition for every name declared in the GLOBALsignature so the Option
type must be defined again.

structure Global: GLOBAL =
struct

open Common

(*---------------------------------*)
(* The option table. *)

type Option = string option
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type OptionTable = Option STRT.hash_table

val option_tbl: OptionTable = STRT.mkTable(20, NotFound)

fun addOption arg = STRT.insert option_tbl arg

fun hasOption name = STRT.find option_tbl name <> NONE

fun getOption name = STRT.find option_tbl name

(*---------------------------------*)

end

The option table is a value in the structure. This value will be created when
the module is compiled into the heap as I described in the section called
Assembling the Hello World Program. The value comes from the mkTable
function. It will end up in the exported heap file. When defining addOption
I made the argument type match the argument to the STRT.insert function.
This avoids unpacking and repacking the contents as it passes from function
to function.

I could have abbreviated the definitions of addOption and getOption
further by taking advantage of currying but I think that this obscures the
code a bit for no real gain.

val addOption = STRT.insert option_tbl
val getOption = STRT.find option_tbl

Finally the main program is rewritten to eliminate all mention of a table of
options.

structure Main=
struct

(* This exception will bomb with a usage message. *)
exception Usage of string

fun parse_cmdline argv : string list =
let

fun loop [] = [] (* no more arguments *)
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| loop ("-h"::rest) = add ("help", NONE) rest

| loop ("-v"::rest) = add ("verbose", NONE) rest

| loop ("-verbose"::rest) = add ("verbose", NONE) rest

| loop ("-width"::rest) = get_value "width" rest

| loop ("-height"::rest) = get_value "height" rest

| loop (arg::rest) =
(

if String.sub(arg, 0) = #"-"
then

raise Usage (concat[
"The option ", arg, " is unrecognised."])

else
arg::rest (* the final result *)

)

and get_value name [] =
(

raise Usage (concat["The value for the option ",
name, " is missing."])

)
| get_value name (v::rest) = add (name, SOME v) rest

and add pair rest =
(

Global.addOption pair;
loop rest

)
in

loop argv
end

fun require_option name and_value : string =
(

case Global.getOption name of
NONE => raise Usage (concat[

"The option ’", name, "’ is missing."])

| SOME NONE => (* found but no value *)
(

if and_value
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then
raise Usage (concat["The option ’", name,

"’ is missing a value."])
else

""
)

| SOME (SOME v) => v (* found with a value *)
)

fun main(arg0, argv) =
let

val files = parse_cmdline argv

val width = require_option "width" true
val height = require_option "height" true

fun show_stuff() =
(

print "The files are";
app (fn f => (print " "; print f)) files;
print ".\n";

if Global.hasOption "verbose"
then

print(concat[
"The width is ", width, ".\n",
"The height is ", height, ".\n"
])

else
()

)
in

if Global.hasOption "help"
then

print "some helpful blurb\n"
else

show_stuff();

OS.Process.success
end
handle Usage msg =>
(

TextIO.output(TextIO.stdErr, concat[msg,
"\nUsage: [-h] [-v|-verbose] [-width width]",
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" [-height height] files\n"]);
OS.Process.failure

)

val _ = SMLofNJ.exportFn("getopt2", main)
end

Since I am now using modules from the SML/NJ utility library I must
mention the library in the CM file for the program. Here is the getopt2.cm
file. It has the path to a CM file for the library which was created when
SML/NJ was installed.

group is
getopt2.sml
/src/smlnj/current/lib/smlnj-lib.cm

An alternative to having the table in the heap is to have it built on demand
when the program runs. A convenient way to do this in SML/NJ is described
in the section called Lazy Suspensions in Chapter 4.

The Deluxe getopt
The getopt programs I’ve done so far implement a simple command line
syntax. This next one, called getopt3.sml , does the full Gnu-style syntax
with short and long options etc. It will report its usage as:

Usage: getopt
-v -verbose Select verbose output

-width=width The width in pixels
-height=height The height in pixels

-h -help Show this message.

I’ve written this program using the GetOpt structure in the SML/NJ utility
library. This structure is rather under-documented and not that easy to
figure out. You can find its signature in the getopt-sig.sml file. When you
use this module to parse the command line you get back a list of options and
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files similar to my first getopt program. But I will then transfer them to a
global option table as in the the second getopt program.

I start by building an Option module that contains the command line
parsing and can deliver the values of the options imperatively. The API for
this module is specified in the OPTIONsignature. I’ve put in an alias of G for
the GetOpt structure to save on typing.

structure Option: OPTION =
struct

structure G = GetOpt

The interface to the GetOpt structure revolves around a single type to
represent all of the possible options. This should be a datatype to be useful. I
start by defining the Option type. I keep the width and height as strings for
simplicity but in a real program you would probably use integers with
Int.fromString to do the conversion.

(* This represents an option found on
the command line.

*)
datatype Option =

Verbose
| Help
| Width of string
| Height of string

An option is described by the following record type in GetOpt .

type ’a opt_descr = {
short : string,
long : string list,
desc : ’a arg_descr,
help : string
}
(* Description of a single option *)

The short field contains the single letter version of the option. If you have
more than one letter then they are treated as synonyms. The long field
contains the long version of the option as a list of strings. Again if you have
more than one then they are treated as synonyms.
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The desc field describes properties of the options value and how to map it to
the representation type (my Option ). The value of this field is of the
following datatype from GetOpt .

datatype ’a arg_descr
= NoArg of unit -> ’a
| ReqArg of (string -> ’a) * string
| OptArg of (string option -> ’a) * string

The ’a type variable is a place holder for the representation type. If the
option takes no value then supply NoArg . You must include with it a
function that returns a representation value for the option. If the option
requires a value then supply ReqArg along with a function to convert the
value to the representation type and a description of the value for the usage
message. If the option’s value is optional then supply OptArg along with a
conversion function and a description as for ReqArg . Note that for OptArg
the conversion function is passed a string option type to tell whether the
value is available or not.

Here is my code for part of the option description list.

fun NoArg opt = G.NoArg (fn () => opt)
fun ReqArg opt descr = G.ReqArg (opt, descr)

val options: (Option G.opt_descr) list = [
{short = "v", long = ["verbose"],

desc = NoArg Verbose,
help = "Select verbose output"

},

{short = "", long = ["width"],
desc = ReqArg Width "width",
help = "The width in pixels"

},

I’ve defined two helper functions to make it easier to write the option
descriptions. My NoArg function takes a value of the representation type and
wraps it into a conversion function for the GetOpt.NoArg data constructor.

My ReqArg does a similar thing but here the first argument opt is the
conversion function. The data constructors Width and Height in the
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Option type can be used as functions to construct values of type Option
from the types that they tag. For example the Width data constructor
behaves as a function with the type string -> Option which is just the
type needed for GetOpt.ReqArg .

The command line is parsed using the GetOpt.getOpt function. Its signature
is

datatype ’a arg_order
= RequireOrder
| Permute
| ReturnInOrder of string -> ’a

(* What to do with options following non-options:
* RequireOrder: no processing after first non-option
* Permute: freely intersperse options and non-options
* ReturnInOrder: wrap non-options into options
*)

val getOpt : {
argOrder : ’a arg_order,
options : ’a opt_descr list,
errFn : string -> unit

} -> string list -> (’a list * string list)

(* takes as argument an arg_order to specify the
* non-options handling, a list of option descriptions
* and a command line containing the options and
* arguments, and returns a list of (options,
* non-options)
*)

The first argument is a record of details about the options. I’ll just use
RequireOrder for the ordering control. The options field is my list of
option descriptions. For an error function I just need something to print a
string to stdErr .

fun toErr msg = TextIO.output(TextIO.stdErr, msg)

The second argument is the argv list. The result is a list of representation
values and the remaining arguments, the file names. Here is my code to
parse the command line.
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val opt_tbl: (Option list) ref = ref []

fun parseCmdLine argv =
let

val (opts, files) =
G.getOpt {

argOrder = G.RequireOrder,
options = options,
errFn = toErr
} argv

in
opt_tbl := opts;
files

end

When I get back the list of options I assign it to the imperative variable
opt_tbl . The variable must have an initial value which is constructed by
the ref data constructor from an empty list.

Then I can write some accessor functions to get option information from the
table.

fun hasVerbose() =
(

List.exists (fn opt => opt = Verbose) (!opt_tbl)
)

fun hasHelp() =
(

List.exists (fn opt => opt = Help) (!opt_tbl)
)

fun getWidth() =
let

val opt_width = List.find
(fn Width _ => true | _ => false)
(!opt_tbl)

in
case opt_width of

NONE => NONE
| SOME(Width w) => SOME w
| _ => raise Fail "Option,getWidth"

)
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The ! operator dereferences the imperative variable. It is like the * operator
in C. The operator precedence rules require the parentheses around the
dereference. I’ve used List.exists to check for the presence of the simple
options in the table.

To get the width value out I need List.find to return the entry from the
list. The predicate needs some more elaborate binding patterns in order to
recognise the Width tag and ignore the string value with an underscore. The
case expression must cover all possibilities or else you will get messy
warnings from the compiler which should be avoided at all costs or some day
you will miss a genuine error among the warnings. In this example I need to
cover the find returning a non-Width entry even though that is impossible
for the predicate I’ve used. The Fail exception is a built-in exception in the
Basis library that you can use to signal an internal fatal error. Use it only for
impossible conditions like this. The GetOpt implementation also uses it for
impossible conditions.

Finally I rewrite the require_option function to check that the option was
supplied on the command line. It works for all of the get* functions.

fun require_option func name : string =
(

case func() of
NONE => raise Usage (concat[

"The option ’", name,
"’ is missing."])

| SOME v => v
)

Then my main function becomes:

fun main(arg0, argv) =
let

val files = Option.parseCmdLine argv

val width = require_option
Option.getWidth "width"

val height = require_option
Option.getHeight "height"
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fun show_stuff() =
(

print "The files are";
app (fn f => (print " "; print f)) files;
print ".\n";

if Option.hasVerbose()
then

print(concat[
"The width is ", width, ".\n",
"The height is ", height, ".\n"
])

else
()

)
in

if Option.hasHelp()
then

print "some helpful blurb\n"
else

show_stuff();

OS.Process.success
end
handle Usage msg =>
(

toErr msg; toErr "\n";
toErr(Option.usage()); toErr "\n";

OS.Process.failure
)

Notes
1. The details of specifying the CM file name will change in a future release

of SML/NJ.

2. This function is called reduce in some languages
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3. My naming convention dresses up public names in mixed case and uses
lower case with underscores for private names. Types start with an
uppercase.
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The Basis library is the library of standard types, functions and modules
that are built-in for the Standard ML language. There is a set of reference
documentation in the form of HTML pages for the library. You can download
this documentation from the SML/NJ home page[SML]. You will need a copy
of this documentation to follow the programming examples in this book.

In this chapter I will give you a brief overview of the library and discuss in
more detail some of the more obscure features of the library. At the time of
writing this, a more detailed book on the library is still in preparation (by
another author).

You should also have a copy of the source code of the SML/NJ compiler. The
Appendix C describes how to download it. The compiler is itself written in
SML. The only part you need to pay attention to is the boot/ directory. This
contains the source code of the Basis library as well as the SML/NJ
extensions. I find it very useful to consult this when the documentation is
unclear.

Preliminaries
Start by reading the Introduction to the library in the Basis documentation
all the way through. Then read the "SML’96 Changes" section. This
documents changes to the language since some of the books and tutorials on
SML were written. The most notable changes for system programming are
the addition of:

• the char type and character literals (previously characters were
represented by strings of length 1);

• unsigned integer types called word with sizes of 8, 31 and 32, and the 0w
prefix for their literals;
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• hexadecimal signed and unsigned integers.

The value polymorphism restriction is not something you will likely
encounter. For the purposes of this book it mainly requires you to ensure
that imperative variables using the ref type are restricted to contain a
specific declared type.

The section on type abbreviations in signatures allows type declarations like
the type Option in the section called Getopt with a Hash Table in Chapter 2.
I won’t pay any attention to opaque signature matching but you will see it in
some of the library source where a signature is matched using ":> " instead
of ": ". The difference is that the opaque form ensures that a type can be
exported from a module with absolutely no information about its
implementation being available. Normally the compiler peeks inside
modules and can recognise when different type names exported from
different modules are the same type because they have the same
representation inside the module.

The next section on the "Top Level Environment" lists all of the types and
functions that are available directly without having to be qualified by a
module name. The phrase "top level" refers to the level of the prompt you get
when you start up the SML compiler. All of these top-level names are
associated with one of the library modules and are documented in more
detail there. This section just provides are reference for what names don’t
need module qualification. The overloading of operators and their
precedence is also presented.

General
The General structure contains miscellaneous definitions.

The exnName and exnMessage are important for dealing with uncaught
exceptions in your programs. You should always have some exception
handlers around a top-level function looking something like this.
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val success = OS.Process.success
val failure = OS.Process.failure

fun run args =
let

...
in

process args;
success

end
handle

IO.Io {name, function, cause} =>
(

toErr(concat["IO Error ", name,
" ", function,
" ", exnMessage cause, "\n"]);

failure
)

| Fatal => (toErr "Aborting\n"; failure)

| InternalError msg =>
(

toErr(concat["Internal error, ", msg, "\n"]);
failure

)

(* misc exception *)
| x =>

(
toErr(concat["Uncaught exception: ", exnMessage x,"\n"]);
failure

)

I usually have a Fatal exception to abort a program upon a fatal error. Each
site that detects the error produces an error message and raises Fatal to
abort the program. I also have an InternalError exception to report all
places that should be unreachabled. Each site that raises InternalError
must include a message that uniquely identifiers the site for debugging. The
last handler above catches all other exceptions and describes them.

The functions ! and := for dereferencing and assignment of imperative
variables are defined here. Assignment is made infix with a precedence in
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the top-level environment. Dereference is an ordinary prefix function and so
you will normally need to use parentheses around it. For example f !x is
interpreted as a call to the function f with two arguments, ! and x when you
probably meant f (!x) .

The function o composes two functions together. It is sometimes useful when
passing a combination of functions as an argument. For example a function
map (lookup o uppercase) could be applied to a list of strings to replace
each one by converting it to uppercase and then passing it through a lookup
function.

The before function looks a bit odd. You can use it to attach tracing messages
to expressions. For example

let
....

in
print "starting f\n";
f x before print "done f\n"

end

Option
The Option structure provides some useful functions for dealing with
optional values. For any value v the expression (SOME v) represents the
value being present and NONEfor an absent value.

When a function returns an optional value you can use getOpt to reduce it
to a definite value. It does this by providing a default if the optional value is
omitted. For example to look up a name in a translation table and return the
original name if it isn’t present write something like getOpt(STRT.find
table name, name) .

If you are 100% confident that the optional result from a function is present
you can use valOf to reduce it to a definite value. It will raise the Option
exception if you are wrong.
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The isSome function can be useful to detect if an optional value is present. If
the base type of the option is an equality type you could write (f x) =
NONE. But this won’t work for all types for example, at the top level:

- val z = SOME (fn x => x);
val z = SOME fn : (’a -> ’a) option
- z = NONE;
stdIn:25.1-25.9 Error: operator and operand
don’t agree [equality type required]

operator domain: ”Z * ”Z
operand: (’Y -> ’Y) option * ’X option
in expression:

z = NONE
- Option.isSome z;
val it = true : bool

Here z is an optional function and you can’t test two functions to see if they
are the same so you can’t write z = NONEeither. You must either use
isSome or use a case expression.

The other functions in the Option structure might be useful in special
circumstances. The map function looks to be the most useful.

Bool
The Bool structure provides some useful functions for I/O with booleans. For
example write

print(concat["The flag is ", Bool.toString flag, "\n"])}

to print out the value of a flag.

The fromString function will do the reverse but it returns a bool option
to indicate errors. The scan function is for use with with the more general
string scanning system in StringCvt which I will discuss in the section
called Text Scanning.
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Text

The Types
The String structure provides a typical collection of string operations. The
documentation is straightforward.

Note that all subscripts are range checked. This can be a big performance hit
if you use, for example, the sub function to search through a string. Where
possible you should use some of the other functions. Alternatively you may
find that using explode followed by list operations is faster, at the cost of
using more memory. If you really need to do a lot of fast indexing into a
string you can find a subscript function without range checking in the
Unsafe.CharVector.sub function, which you can find in the
boot/Unsafe directory of the compiler source.

The current version of SML/NJ (110.0.7) does not implement wide strings.

The Char structure provides a typical collection of character operations,
again straightforward. The character classification functions like isSpace
and case conversion are here.

Here are some examples.

fun uppercase s = String.map Char.toUpper s

(* Apply HTML quoting. *)
fun quoteHTML v =
let

fun quote #"\"" = "&quot;"
| quote #"&" = "&amp;"
| quote #"<" = "&lt;"
| quote c = str c

in
String.translate quote v

end

(* Break a string into words at white space. *)
fun split s = String.tokens Char.isSpace s
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For more elaborate string parsing on large strings the functions in the
Substring structure will be more efficient. A substring is represented as a
pointer to a range of characters in an underlying string. So you can work on
pieces of the string without any copying. Here are some examples.

fun skipWhiteSpace s =
Substring.string(

Substring.dropl Char.isSpace (Substring.all s))

fun countLines s =
Substring.foldl

(fn (ch,n) => if ch = #"\n" then n+1 else n) 1
(Substring.all s)

Text Scanning
The StringCvt structure provides the infrastructure for reading values out
of text. The infrastructure is based around the idea of a reader function that
can split a value off of the beginning of a stream. Then there are
transformers that build up more complex readers from simpler readers.

You have complete freedom in how you represent and implement streams
just as long as they have a functional style. This means that if you have a
stream strm and a get function that gets the first value of the stream then
the expression (get strm) can be evaluated as many times as you like and
it will always return the same value since it has no side-effects on the
stream. The type of a reader function is

type (’a, ’b) reader = ’b -> (’a * ’b) option

In this, type ’b represents the stream and ’a is a value from the stream.
The reader function returns one value from the front of the stream along
with the remainder of the stream. An option type is used with NONE
representing failure to find a value in the stream. So for example if strm
contains the characters "abc" and get is a character reader then (get
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strm) returns the first character from the stream along with the rest of the
stream as the pair SOME(#"a", "bc") .

Transformer functions convert a stream of some type T to a stream of
another type U. In the infrastructure they are applied on the fly. You have to
at some point arrive at a stream of characters for the text scanning. Figure
3-1 shows an example of transformations for reading a stream of integers
from character buffers. You write your transformer that can deliver
characters one by one from the buffers. This will involve maintaining an
offset into the buffer for where the next character will come from. Then you
can use the Int.scan function to transform this stream of characters into a
stream of integers.

Figure 3-1. Some Stream Transformations

Some possible sources of character streams are:

• a string. The StringCvt.scanString will transform a string to a
character stream and deliver it to a transformer, and return the first value
from the transformed stream. It is designed for one-off use to implement
fromString functions.

• an input stream from a file. The TextIO.scanStream function will
deliver a stream of characters from a file to a transformer and then return
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the first value from the transformed stream. Since I/O streams are
imperative the stream will be updated but it will be pure enough to
complete the reading of the value.

• a list of characters. The List.getItems function can deliver list
elements matching the requirements of a reader.

• a substring of a string using Substring.getc .

Here is an example of a function that transforms a character stream by
splitting the stream into lines and extracting a triple of an integer, boolean
and a real from each line.

fun ibr rdr the_cstrm =
let

(* Read all characters to the end of the
string or a newline. This returns the
line and the rest of the stream.

*)
fun get_line cstrm rev_line =
(

case rdr cstrm of
NONE => (cstrm, implode(rev rev_line))

(* ran out of chars *)

| SOME (c, rest) =>
(

if c = #"\n"
then

(rest, implode(rev rev_line))
else

get_line rest (c::rev_line)
)

)

val (strm_out, line) = get_line the_cstrm []
val l1 = Substring.all line

val (i, l2) = valOf(Int.scan StringCvt.DEC
Substring.getc l1)

val (b, l3) = valOf(Bool.scan Substring.getc l2)
val (r, l4) = valOf(Real.scan Substring.getc l3)

in
SOME((i, b, r), strm_out)

end
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handle Option => NONE

The transformer must take a character reader as an argument so I want the
expression (ibr rdr) to be a reader that reads triples when rdr is a
character reader. But a reader is a function taking a stream as an argument.
So if I define the function as fun ibr rdr the_cstrm where the_cstrm
is the character stream to read then, using currying, the expression (ibr
rdr) will be of the correct type, i.e. a function taking a character stream.

The first thing the transformer does is read characters from the stream until
it has a complete line. The characters are accumulated into a list in reverse.
At the end they are joined into a string. This is the fastest way to accumulate
a string from characters.

Next I want to get the line into a stream that can be scanned. The
Substring.getc function satisfies the requirements for a reader function if
the stream is a substring. Then I can call the scan functions for each type to
get the values on the line. Note that I get back an updated substring in the
l2 , l3 and l4 variables. I use valOf to get the result out from under the
SOME. If the scan fails then it will return NONEwhich will cause valOf to
raise the Option exception. A reader function indicates failure by returning
NONEso that’s what the exception handler does.

The main program shows how StringCvt.scanString applies the
transformer to a string returning exactly one result.

fun main(arg0, argv) =
let

val text = "\
\ 123 true 23.4 \n\
\ -1 false -1.3e3 \n\
\"

in
case StringCvt.scanString ibr text of

NONE => print "ibr failed\n"

| SOME (i, b, r) => print(concat[
Int.toString i, " ",
Bool.toString b, " ",
Real.toString r, "\n"
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]);

OS.Process.success
end

See the documentation for StringCvt for more details.

Bytes
Bytes are represented by the type word in the Word8 structure. The Byte
structure provides conversions between strings of characters and sequences
of bytes. This will be especially useful for the web server project since
reading and writing to TCP/IP sockets is done with bytes which we will want
to convert to strings.

Integers
The Basis library allows for multiple modules for signed integers of different
sizes. These all satisfy the common signature INTEGER. On 32 bit
architectures SML/NJ only supplies 31 and 32 bit signed integers.

The 31 bit size looks strange but it is designed to help the garbage collector
(GC). The GC needs to scan each word in the heap and tell whether it is a
pointer or not. The SML/NJ solution is to use the least significant bit (LSB)
to tell the difference. If you want a 32 bit integer then it must be allocated in
a separate heap record with a type tag. (See the section called Heap Object
Layout in Chapter 7 for details). You should use 31 bit integers wherever
possible for more efficient storage.

The structures Int and Int31 are both 31 bit integers and the top-level type
int is the same as Int.int . Use the Int32 structure for 32 bit integers.
There is also a structure called LargeInt which is supposed to be the
largest integer type that the hardware implements. It is used as an
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intermediary when converting between integers of other sizes. The
bind-largest.sml file in the compiler’s boot directory shows the
definitions of the various integer types in terms of sizes. (The Position type
is used for file positions in the Posix functions).

To get an integer literal of a type other than Int.int you will need a type
constraint e.g. write (23: Int32.int) to get the 32 bit integer value 23.
You can use a 0x prefix for hexadecimal, like in C.

All integer operations check for overflow, unlike C. The Overflow exception
is raised if there is any integer overflow or underflow.

There are also matching unsigned integer structures, Word, Word8, Word31 ,
Word32 , LargeWord and SysWord . These are of sizes 8, 31 and 32 bits as
you would expect. Use a 0w prefix for word values and 0wx for word values in
hexadecimal. Arithmetic on unsigned integers does not raise the Overflow
exception.

The unsigned integer structures conform to the WORDsignature which adds
bit-wise operations to the usual integer operations.

Finally there is an infinite precision integer structure IntInf . This
represents numbers with any number of digits. To input a literal
IntInf.int value you need to use fromString i.e. write

valOf(IntInf.fromString "123456789876543210000000000")

Words can be serialised into byte arrays using the PACK_WORDstructures.
These implement 16 and 32 bit serialisation in big or little endian order in
the Pack16Big , Pack32Big , Pack16Little and Pack32Little
structures.

Reals
The signature REALdescribes the floating-point numbers in SML. Just as
with the integer types there can be multiple structures for reals of different
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precision. But in the SML/NJ compiler there is just the single structure
Real64 and Real and LargeReal are aliases for it. The top-level type real
is an alias for Real.real .

The design of the Real structure aims for correctness first and foremost.
This means it supports the IEEE 754 standard on Nan and infinity and
signed zero. All operations are checked and exceptions, such as Div and
Overflow , are raised. See the documentation for details.

What is unusual about the real type is that it does not allow the standard
equality operators, "=" and "<>". This is to avoid the usual confusion of
equality with inexact values. Instead the Real structure provides a collection
of comparison operators. You can use Real.== and Real.!= for equality
checking with IEEE semantics. These are prefix functions on pairs so you
would have to write (Real.==(x, y)) . The top-level "<", "<=", ">" and
">=" are still available as infix operators on the reals.

The Real structure includes a version of a math structure, conforming to the
MATHsignature, that provides trigonometric and logarithmic functions over
the real type in Real . However these functions are implemented directly in
SML rather than using an underlying math library such as the C library.
This makes them a bit slow.

The Basis definition describes Pack structures to serialise reals but
unfortunately they are not implemented in SML/NJ.

Lists
The List structure provides a typical collection of list operations.

The "@" operator will append two lists but this will result in copying the first
list in order that it remain immutable. Only prepending an element with
":: " is cheap. You can prepend in bulk using the revAppend function. This
will push all of the elements of the first list onto the front of the second. This
is useful when building lists in reverse in tail-recursive functions.
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The apply function, app , applies a function only for side-effects. These might
be for writing to an output stream or updating an imperative table.

The tabulate function can be useful for creating lists of a given length. For
example

implode(List.tabulate(100, fn _ => #" "))

will make a string of 100 blanks.

The ListPair structure adds some functions for dealing with lists of pairs.

Arrays and Vectors
Arrays are the only other mutable data structure after the ref type. They
are similar to C arrays. Entries are indexed from 0. All index operations are
range checked. The top level array type can contain entries of any type (as
long as they are all the same type of course). In addition SML/NJ provides
arrays specialised to a fixed entry type: CharArray , Word8Array and
Real64Array . You could use CharArray as a text buffer or Word8Array as
a byte buffer. These conform to the MONO_ARRAYsignature.

If you want faster access without range checking then there are some unsafe
versions of these structures in Unsafe.CharArray , Unsafe.Word8Array
and Unsafe.Real64Array . See the section called The Unsafe API in
Chapter 4.

The Array2 structure provides two-dimensional arrays.

Vector types are like arrays but they are immutable. The most useful forms
of vectors are the monomorphic structures: CharVector , Word8Vector and
Real64Vector . The CharVector.vector type is defined to be the same as
the top-level string type so you can use its functions on strings. The
Word8Vector.vector provides a byte string that is used for binary I/O in
other parts of the Basis library.
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The Portable I/O API
The Basis library provides a portable I/O API built on top of the operating
system facilities. The source for most of the API can be found in the boot/IO
directory of the compiler. The OS-dependent part of the implementation can
be found in the boot/Unix directory for Posix-based Unix systems.

Figure 3-2 shows the major interfaces of the I/O API. (The notation is based
on UML). SML signatures are pure interfaces and are extended by
refinement which adds new features and by specialisation which makes
abstract types concrete.

Figure 3-2. The Major Signatures of the Portable I/O API

The lowest level interface is PRIM_IO . It abstracts the basic operations of
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reading and writing over some I/O channel. The OS_PRIM_IO interface
extends this with some functions for associating a channel with a file via
some sort of OS-dependent file descriptor or handle.

The next level up is the STREAM_IOinterface. It wraps buffering operations
around the I/O channels and calls them streams. It is abstract over any
implementation of I/O channels and any type of data element. (The PRIM_IO
interface will be used to provide an implementation for STREAM_IOlater).

Input streams are handled in a lazy functional manner. This means that
streams are read from only upon demand (as you would expect) and the read
returns a stream updated at a new position. So you can read from the same
stream value multiple times and it always returns the same data from the
same position. Output streams are imperative. Each write will append new
data to the output stream.

The TEXT_STREAM_IOinterface specialises STREAM_IOfor characters and
extends it with a function to read a line of text and to write from substrings
(see the Substring structure).

The IMPERATIVE_IO interface wraps around the STREAM_IOand provides
an interface using imperative streams. This means that the position of a
stream is a hidden state variable which is updated after each read operation.
The IMPERATIVE_IO is then specialised into binary and text I/O. The
BIN_IO interface fixes the data type to be bytes. The TEXT_IO fixes it to be
characters with an understanding of text conventions such as line splitting.
It also gets knowledge of the Unix stdin, stdout and stderr text streams. The
underlying STREAM_IOinterface is made visible in TEXT_IO for when you
want to use a functional I/O style.

The implementation hierarchy is shown in Figure 3-3. The PrimIO structure
mainly defines some types and utility routines which represent buffered I/O.
These are specialised by having the I/O types bound to either bytes
(Word8.word ) or characters. This results in the structures BinPrimIO and
TextPrimIO respectively. The PosixBinPrimIO structure adds an
implementation of binary I/O using the I/O functions in Posix.IO . (See the
section called Posix.IO ). Then the PosixTextPrimIO structure casts the
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binary I/O to text I/O and this results in the TextIO structure.

Figure 3-3. The Major Structures Implementing the Portable I/O API

For binary I/O there is a matching BinIO structure that reads and writes
streams of bytes.

There is an IO structure that defines some common exceptions and types.
The IO.Io exception is the main error reporting mechanism for the
portable I/O API.

Here is a simple example that counts characters, words and lines in a file. It
does the job of the Unix wc command but without the command line options.
Here is the main function.

fun main(arg0, argv) =
let
in

87



Chapter 3. The Basis Library

case argv of
[] => count TextIO.stdIn ""

| (file::_) =>
let

val strm = TextIO.openIn file
in

(count strm file) handle x =>
(TextIO.closeIn strm; raise x);

TextIO.closeIn strm
end;

OS.Process.success
end
handle

IO.Io {name, function, cause} =>
(

toErr(concat["IO Error: ", name,
", ", exnMessage cause, "\n"]);

OS.Process.failure
)

| x => (toErr(concat["Uncaught exception: ", exnMessage x,"\n"]);
OS.Process.failure)

If there are no command line arguments then I read from stdin. If there are
some then I take the first one and ignore the rest. Any I/O exception from
the count function for a file is caught so that we can close the file. This is not
strictly necessary since the file will get closed anyway when the program
exits but I included it as an example of catching and reraising an exception.
An I/O exception from anywhere else will be caught in the outermost
handlers down the bottom.

Here is the count function. It is just a simple loop which terminates when
the inputLine function returns an empty string. An empty line does not
terminate the loop since it will have a new-line character in it. The
inputLine function also returns a new-line in the case of an unterminated
last line in a file. So the program will count an extra character in this case.
Words are counted by splitting the line into tokens at white space and
counting how many we get.

fun count strm file =
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let
fun read (nchars, nwords, nlines) =
(

(* This ensures the line ends with a \n
unless we are at eof.

*)
case TextIO.inputLine strm of

"" => (nchars, nwords, nlines)

| line =>
let

val words = String.tokens Char.isSpace line
in

read (nchars + size line,
nwords + length words,
nlines + 1)

end
)

val (nchars, nwords, nlines) = read (0, 0, 0)
in

print(concat[Int.toString nlines, " ",
Int.toString nwords, " ",
Int.toString nchars, " ",
file, "\n"])

end

The Portable OS API
The Basis library provides a portable API for operating system-level
operations. These deal in processes, file systems, time, date and
device-specific I/O attributes, and models for manipulating these resources
that are largely system-independent. In the Basis documentation this API is
described under the heading of "System".

The OSstructure contains part of the API in the substructures FileSys ,
Path , Process and IO as well as some common exception and error
handling functions. The OS.FileSys structure provides an API for scanning
directories, altering directories by deleting or renaming files and checking
access permission. You can get and change the current directory here too.
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The OS.Path provides an abstract view of file paths. The OS.Process
structure provides a few process-oriented functions that are still rather Unix
specific. The OS.IO structure provides an interface to the Posix poll system
call. Presumably it can be implemented in terms of other system calls on
other operating systems. I’ll ignore it.

The signatures for the OS API can be found in the boot/OS directory of the
compiler. Most of the implementation can be found in the boot/Unix
directory for Posix-based Unix systems.

OS.FileSys

The file system API is straight-forward enough. I’ll illustrate it with a
program to scan a directory tree looking for writable executable files on the
grounds that these might be a security hazard. Symbolic links won’t be
followed. I start with some useful declarations.

structure FS = OS.FileSys
structure OP = OS.Path

fun toErr msg = TextIO.output(TextIO.stdErr, msg)

exception Error of string

The structure declarations just provide convenient shorthand names. I’ve
added my own Error exception so that I can report more meaningful
context-sensitive errors.

Here is the main function.

fun main(arg0, argv) =
let
in

case argv of
[] => scan_dir OP.currentArc

| (file::_) => scan_dir file;

OS.Process.success
end
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handle
OS.SysErr (msg, _) =>

(
toErr(concat["System Error: ", msg, "\n"]);
OS.Process.failure

)

| Error msg => (toErr msg; OS.Process.failure)

| x => (toErr(concat["Uncaught exception: ", exnMessage x,"\n"]);
OS.Process.failure)

The program will take a directory name on the command line or if one is
omitted then the current directory is used. The OS.Path.currentArc
function provides a portable way to represent the current directory. Errors
that I expect from user input are reported via the Error handler. But I also
catch other OS.SysErr exceptions just in case.

I open a directory with the following function. It catches the OS.SysErr
exception and turns it into a more meaningful error message. (The optional
syserror code in the exception is redundant).

fun open_dir dir =
(

FS.openDir dir
)
handle

OS.SysErr (msg, _) => raise Error (concat[
"Cannot open directory ", dir, ": ", msg, "\n"])

Finally here is the directory scanning function.

fun scan_dir dir =
let

(* val _ = print(concat["scan_dir ", dir, "\n"]) *)
val strm = open_dir dir

fun get_files files =
(

case FS.readDir strm of
"" => rev files (* done *)

| f =>
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let
val file = OP.joinDirFile

{dir = dir, file = f}
in

if FS.isLink file
then

get_files files
else

get_files (file::files)
end

)

val files = get_files []
val _ = FS.closeDir strm

fun show_wx file =
(

if FS.access(file, [FS.A_WRITE, FS.A_EXEC])
then

(print file; print "\n")
else

()
)

fun scan_subdir file =
(

if FS.isDir file
then

scan_dir file
else

()
)

in
app show_wx files;
app scan_subdir files

end

The first line is just some tracing I used while debugging the function.

The val declarations are executed in the order that they appear. This is
important since they may have side-effects. The get_files function reads
the stream to build a list of files in the directory. It comes after the strm
name is defined because it refers to it as a global name. The directory stream
is updated imperatively by the readDir function. The
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OS.Path.joinDirFile function is a portable way to add a path element. It
will use the right kind of slash.

I want to avoid accumulating open directories while walking the directory
tree as I might run out of open files if the tree is too deep. So instead I
extract the files and close the directory stream. This means that I will be
retaining in memory all of the files in the directories along a path through
the tree. File paths will be discarded on the way back up the tree so the
garbage collector can reclaim them if needed. There is lots more memory
than there are available file descriptors.

The show_wx function prints the file name if it is writable and executable. It
is iterated over the list of files using the built-in app function (see the section
called Lists). I recurse in scan_subdir by scanning each file that is a
directory.

OS.Path

The functions in OS.Path model a file path as a list of names called arcs.
There is also provision for a volume name for Microsoft Windows. File names
can have an extension marked by a "." character. There are functions for
splitting and joining all of these kinds of parts.

OS.Process

Your main interest in OS.Process is for the success and failure values
which are needed as exit codes for your main program. The system
command for running shell commands could be useful but if you want to
capture the output see the functions in the Unix structure.

You can abort your program early with the exit or terminate functions
but I prefer to use an exception for fatal errors. It leaves open the possibility
of higher-level functions trapping the errors.
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The getEnv function gets environment variables like the C library’s
getenv() function.

Time and Date
Time and Date values are provided in the Time and Date structures
respectively. They are documented in the Basis library under the "System"
heading. Their implementations appear in the boot/ directory of the
compiler.

Time values in SML/NJ are stored as a pair of seconds and microseconds.

The main trick to remember with the time type is that the top-level
operators are not overloaded on them. So if you want to subtract two time
values you need to write something like Time.-(t1, t2) . Similarly for the
other symbolic functions in Time .

Also the conversion with integer values uses the LargeInt structure which
on 32-bit systems is the same as Int32 i.e. boxed 32-bit integers. (See the
section called Integers).

You can convert a date represented as the number of seconds since the Unix
epoch to a year/month/day representation using the Time and Date
structures. Write something like this:

val date = Date.fromTimeLocal(Time.fromSeconds 99999999)
val year = Date.year date

The month and day of the week is represented by the enumeration types
weekday and month in Date . There is no mechanism for converting these
values to integers or strings. You’ll have to write your own. What you can do
though is use the Date.fmt function to format a date any way you like. It
uses the strftime() C library function underneath so the result should be
properly locale-dependent.

At the time of writing, SML/NJ has not implemented the Date.fromString
and Date.scan functions.
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Unix
The "System" documention for the Basis library describes a Unix structure.
It’s not really a portable OS thing. It just provides some simple utility
functions for spawning a sub-process, talking to it through stdin and stdout
and killing it afterwards. The source for it can be found in the boot/Unix
directory of the compiler.

The POSIX API
The Basis library provides a useful collection of POSIX functions on Unix
systems. These are grouped together under substructures in the Posix
structure. The source for these functions can be found in the compiler in the
boot/Posix directory surprisingly enough. Much of the SML
implementation is just a wrapper around calls to the corresponding C
functions. The C code is in the runtime under the c-libs/ directory.

Posix.Error

The syserror value is a representation of the POSIX errno error codes.
This is the same type as OS.syserror which appears in the OS.SysErr
exception.

It appears as an abstract type but internally it is represented as an integer
with the same value as the errno code. The errorMsg function returns the
same string used by the perror() C library function. The unique name
returned by errorName is derived from the symbol for the POSIX error code.
If you need the actual integer value for the error code then you can use
toWord .
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Posix.FileSys

The Posix.FileSys structure provides functions for dealing with
directories and files except for the actual I/O which is in Posix.IO . Where
possible you should use the corresponding OS.FileSys functions which are
intended to be a bit more portable.

At this level you are working with Unix file descriptors, represented by the
type file_desc . There is also a OS.IO.iodesc type for the file descriptors
used by the poll interface in OS.IO . A separate type is used to make the
OS.IO interface more independent of the POSIX layer and therefore more
portable. Underneath they are both Unix file descriptors.

Most of the functions should be straight-forward to use. The flags may need
some explaining. Flags are represented by lists of values of some flag type.
The underlying bit patterns of the values in a list are or-ed together. Each
substructure containing flags inherits a flags function from the
POSIX_FLAGSsignature to convert the list to the bit pattern. For example
write

structure FS = Posix.FileSys
...

FS.chmod("myfile", FS.S.flags
[FS.S.irusr, FS.S.irgrp, FS.S.iroth])

...

to set the permissions of the file "myfile " to 0444. The sticky mode bit with
value 01000 is deliberately filtered out by the stat functions as it is not part
of the POSIX standard so you will never be able to test or preserve it.

To give the functions a workout here is a stat (basis/statx.sml) program that
reports a file’s status in detail. First I start with some useful declarations.
The wordToDec function is needed since the SysWord.toString function
always formats in hexadecimal. (See the Basis documentation on the WORD
signature).

structure FS = Posix.FileSys

exception Error of string
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fun toErr msg = TextIO.output(TextIO.stdErr, msg)

fun wordToDec w = SysWord.fmt StringCvt.DEC w

Here is the main function. It is pretty boiler-plate by now. It only recognises
a single command line argument which must be the file name. The various
functions we are using use the OS.SysErr exception so I’ve put in a
catch-all for it.

fun main(arg0, argv) =
let
in

case argv of
[file] => (stat file; OS.Process.success)

| _ => (toErr "Usage: statx filename\n"; OS.Process.failure)
end
handle

OS.SysErr (msg, _) =>
(

toErr(concat["Error: ", msg, "\n"]);
OS.Process.failure

)

| Error msg => (toErr msg; OS.Process.failure)

| x => (toErr(concat["Uncaught exception: ", exnMessage x,"\n"]);
OS.Process.failure)

Here is the function to report the stat data. I’ve put in a SysErr handler on
the stat function so that I can report the file name. This is the most likely
error to come from the program. Note that for better portability you should
use the matching integer structure when printing integers e.g.
Position.toString for Position.int types. It happens on the Intel x86
architecture that Position = Int but this may not be true on other
architectures.

fun stat file =
let

val st = (FS.stat file)
handle OS.SysErr (msg, _) =>

raise Error (concat[ file, ": ", msg, "\n"])
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val mode = FS.ST.mode st
val uid = FS.ST.uid st
val gid = FS.ST.gid st

in
print(concat[" File: ", file, "\n"]);

print(concat[" Size: ",
Position.toString(FS.ST.size st), "\n"]);

print(concat[" Type: ",
filetypeToString st, "\n"]);

print(concat[" Mode: ",
SysWord.fmt StringCvt.OCT (FS.S.toWord mode),
"/", modeToString mode, "\n"]);

print(concat[" Uid: ",
uidToInt uid, "/", uidToName uid, "\n"]);

print(concat[" Gid: ",
gidToInt gid, "/", gidToName gid, "\n"]);

print(concat["Device: ",
devToString(FS.ST.dev st), "\n"]);

print(concat[" Inode: ",
wordToDec(FS.inoToWord(FS.ST.ino st)), "\n"]);

print(concat[" Links: ",
Int.toString(FS.ST.nlink st), "\n"]);

print(concat["Access: ", Date.toString(
Date.fromTimeLocal(FS.ST.atime st)), "\n"]);

print(concat["Modify: ", Date.toString(
Date.fromTimeLocal(FS.ST.mtime st)), "\n"]);

print(concat["Change: ", Date.toString(
Date.fromTimeLocal(FS.ST.ctime st)), "\n"]);

()
end

The first of the helper functions called from stat is filetypeToString . It
searches a list of predicate functions to find one that works on the stat buffer
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value. The matching name is returned. I’ve put the list of predicates within a
local block so that is private to filetypeToString without being inside it.
This way the list isn’t built every time that the function is called, which is
wasteful. This doesn’t matter on this small program but it very well might in
other programs.

local
val type_preds = [

(FS.ST.isDir, "Directory"),
(FS.ST.isChr, "Char Device"),
(FS.ST.isBlk, "Block Device"),
(FS.ST.isReg, "Regular File"),
(FS.ST.isFIFO, "FIFO"),
(FS.ST.isLink, "Symbolic Link"),
(FS.ST.isSock, "Socket")
]

in
fun filetypeToString st =
let

val pred = List.find (fn (pred, _) => pred st) type_preds
in

case pred of
SOME (_, name) => name

| NONE => "Unknown"
end

end

The modeToString helper function iterates over a list of flag testing
functions, one for each position in the final mode string. I’ve used currying to
make each of the expressions in the list a function from a mode to the
character for the mode in the string.

local
fun test flag ch mode =
(

if FS.S.anySet(FS.S.flags [flag], mode)
then

ch
else

#"-"
)

fun test2 flag1 ch1 flag2 ch2 mode =
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(
if FS.S.anySet(FS.S.flags [flag1], mode)
then

ch1
else

if FS.S.anySet(FS.S.flags [flag2], mode)
then

ch2
else

#"-"
)

val flags = [
test FS.S.irusr #"r",
test FS.S.iwusr #"w",
test2 FS.S.isuid #"s" FS.S.ixusr #"x",
test FS.S.irgrp #"r",
test FS.S.iwgrp #"w",
test2 FS.S.isgid #"s" FS.S.ixusr #"x",
test FS.S.iroth #"r",
test FS.S.iwoth #"w",
test FS.S.ixoth #"x"
]

in
fun modeToString mode =
let

val chars = foldl
(fn (func, rslt) => (func mode)::rslt)
[] flags

in
implode(rev chars)

end
end

The next group of functions convert uids and gids to their string forms, both
as a decimal number and as a name from the passwd/group files. These use
functions from the Posix.ProcEnv and Posix.SysDB structures, described
later. If there is any exception then I assume that the name is not known in
the file.

local
structure PROC = Posix.ProcEnv
structure DB = Posix.SysDB

in
fun uidToInt uid = wordToDec(PROC.uidToWord uid)
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pun gidToInt gid = wordToDec(PROC.gidToWord gid)

fun uidToName uid =
(

(DB.Passwd.name(DB.getpwuid uid))
handle _ => "unknown"

)

fun gidToName gid =
(

(DB.Group.name(DB.getgrgid gid))
handle _ => "unknown"

)
end

Finally here is devToString . I need to do some bit operations to separate
the bytes of the dev_t word. The current SML definition for a device value
does not allow for the newer 64-bit device numbers. But on Linux on Intel
x86 I get the major and minor numbers in the lower 16 bits of the word. This
is not very portable.

fun devToString dev =
let

val word = FS.devToWord dev
val w1 = SysWord.andb(SysWord.»(word, 0w8), 0wxff)
val w2 = SysWord.andb(word, 0wxff)

in
concat[wordToDec w1, ",", wordToDec w2]

end

POSIX_FLAGS

This signature is an interface that is inherited into each distinct set of flags
in other Posix structures. See for example Posix.FileSys.S for the mode
flags. It provides common operations on flags which are represented as
bit-strings internally. See the section called Posix.FileSys for an example
of flag use.
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Posix.IO

This structure provides the functions that deal with the content of files as a
stream of bytes. It works with the file descriptors that were created with the
Posix.FileSys functions. There is not a lot of need to use the read and
write functions in this structure for general purpose binary file I/O as the
BinIO structure in the section called The Portable I/O API should be all
that you will need. You could use them in conjunction with other functions
that deal with file descriptors such as the file locking functions.

A good demonstration of programming at this level can be found in the
implementation of the execute function in the Unix structure. (See the
boot/Unix directory of the compiler). It shows how to fork and exec a child
process and build portable I/O streams from file descriptors. Central to
building I/O streams are the mkReader and mkWriter functions that are
declared in the OS_PRIM_IO signature. (See the section called The Portable
I/O API). These build reader and writer objects for buffered I/O given a
POSIX file descriptor. You can find implementations of them in the
PosixBinPrimIO and PosixTextPrimIO structures. The result is this code
from the Unix structure.

fun fdReader (name : string, fd : PIO.file_desc) =
PosixTextPrimIO.mkReader {

initBlkMode = true,
name = name,
fd = fd

}

fun fdWriter (name, fd) =
PosixTextPrimIO.mkWriter {

appendMode = false,
initBlkMode = true,
name = name,
chunkSize=4096,
fd = fd

}

fun openOutFD (name, fd) =
TextIO.mkOutstream (

TextIO.StreamIO.mkOutstream (
fdWriter (name, fd), IO.BLOCK_BUF))
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fun openInFD (name, fd) =
TextIO.mkInstream (

TextIO.StreamIO.mkInstream (
fdReader (name, fd), NONE))

The name argument is only used for error reporting to distinguish the
stream. The implementation in the PosixBinPrimIO and
PosixTextPrimIO structures use the Posix.IO.setfl function to change
the blocking mode as requested by the blocking and non-blocking versions of
the I/O functions in a reader or writer. You need to supply the correct initial
state for these modes. If you opened the file with, for example,
Posix.FileSys.openf with O_APPENDor O_NONBLOCKusing the flags in
Posix.FileSys.O then you must pass in the appropriate values for
initBlkMode and appendMode .

The openOutFD and openInFD functions assemble the stream layers as
shown in Figure 3-2. The output stream is set to be fully buffered. Other
possible buffered modes, from the IO structure, are NO_BUFfor no buffering
at all and LINE_BUF if you want to flush the buffer after each line of text.
(LINE_BUF is the same as BLOCK_BUFfor binary streams).

Once you have built a stream on a file descriptor you cannot easily retrieve
the file descriptor to manipulate it while the stream is live. If you call
TextIO.StreamIO.getReader for example intending to get the reader’s
ioDesc field then the stream will be terminated on the assumption that you
will be taking over all I/O from then on. If you need access to the file
descriptor then you should save it somewhere yourself. You might do this if
you want to use the polling interface of the OS.IO structure. (The canInput
function on streams doesn’t poll, it just attempts to do a non-blocking read
on the file descriptor).

Here is the code for Unix.executeInEnv . It demonstrates file descriptor
manipulation while forking and setting up some pipes.

structure P = Posix.Process
structure PIO = Posix.IO
structure SS = Substring
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fun executeInEnv (cmd, argv, env) = let
val p1 = PIO.pipe ()
val p2 = PIO.pipe ()

fun closep () = (
PIO.close (#outfd p1);
PIO.close (#infd p1);
PIO.close (#outfd p2);
PIO.close (#infd p2)

)

val base = SS.string(SS.taker
(fn c => c <> #"/") (SS.all cmd))

fun startChild () =
(

case protect P.fork () of
SOME pid => pid (* parent *)

| NONE =>
let

val oldin = #infd p1
val newin = Posix.FileSys.wordToFD 0w0

val oldout = #outfd p2
val newout = Posix.FileSys.wordToFD 0w1

in
PIO.close (#outfd p1);
PIO.close (#infd p2);

if (oldin = newin) then () else (
PIO.dup2{old = oldin, new = newin};
PIO.close oldin);

if (oldout = newout) then () else (
PIO.dup2{old = oldout, new = newout};
PIO.close oldout);

P.exece (cmd, base::argv, env)
end

val _ = TextIO.flushOut TextIO.stdOut

val pid = (startChild ())
handle ex => (closep(); raise ex)
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val ins = openInFD (base^"_exec_in", #infd p2)
val outs = openOutFD (base^"_exec_out", #outfd p1)

in
(* close the child-side fds *)
PIO.close (#outfd p2);
PIO.close (#infd p1);

(* set the fds close on exec *)
PIO.setfd (#infd p2, PIO.FD.flags [PIO.FD.cloexec]);
PIO.setfd (#outfd p1,PIO.FD.flags [PIO.FD.cloexec]);

PROC {
pid = pid,
ins = ins,
outs = outs

}
end

The startChild function forks (see the section called Posix.Process and
Posix.Signal ) and dups file descriptors in the usual way to get the pipes
connected to stdin and stdout while being careful that they are not already
connected that way. Remember to close the unused ends of the pipe in the
parent and child or else you won’t be able to get an end-of-file indication
when the child exits.

Posix.ProcEnv

This structure provides access to information about a process such as its uid,
gid, pid, running time or environment variables.

You can also get system information via the uname and sysconf functions.
You form the string argument to sysconf by deleting the _SC_ prefix from
the POSIX value name, for example to get _SC_OPEN_MAXwrite
Posix.ProcEnv.sysconf "OPEN_MAX" . All of the _SC_ values defined in
unistd.h on your system should be available this way.

To use file descriptors with isatty you need the conversion function in
Posix.FileSys . For example to determine if stdin is a tty:
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fun isatty() = Posix.ProcEnv.isatty (Posix.FileSys.wordToFD 0w0)

Posix.Process and Posix.Signal

This structure provides functions to fork and exec processes, kill and wait for
them. Equivalent functions for the C library’s alarm() , pause() and
sleep() functions are also included. You can find a demonstration of fork
and exec in the section called Posix.IO .

The kill function uses the signal values defined in Posix.Signal . This
defines a type signal with values for each of the POSIX signals. You can
also convert these to the integer codes for your platform with the toWord
function.

Unfortunately the POSIX API does not currently provide for setting signal
handlers. For that you need to resort the older signal API of the SMLofNJ
structure in the section called Signals in Chapter 4. (If you are looking in the
boot/Unix directory of the compiler, the unix-signals* files define the
signals for this older API).

Posix.SysDB

This structure provides an API for reading the /etc/passwd and
/etc/group files. The uidToName function in the statx program of the
section called Posix.FileSys provides a little demonstration of the API.

Posix.TTY

This structure provides a termio-style API to terminals.

The following function from the ttyx (ttyx.sml) program shows how to
change the erase character on your terminal. (Updating a single field in a

106



Chapter 3. The Basis Library

record is a pain in SML).

fun setErase ch =
let

val fd = Posix.FileSys.wordToFD 0w0
val attr = TTY.getattr fd
val new_attr = TTY.termios {

iflag = TTY.getiflag attr,
oflag = TTY.getoflag attr,
cflag = TTY.getcflag attr,
lflag = TTY.getlflag attr,
cc = TTY.V.update

(TTY.getcc attr, [(TTY.V.erase, ch)]),
ispeed = TTY.getispeed attr,
ospeed = TTY.getospeed attr
}

in
TTY.setattr(fd, TTY.TC.sanow, new_attr)

end

Note that at the time of writing this, the Basis library documentation for
Posix.TTY doesn’t match SML/NJ version 110.0.7. In version 110.0.7 there
is no internal structure called Posix.TTY.CF . Its contents appear directly
in Posix.TTY . Similarly these functions which should be in the
Posix.TTY.TC structure appear directly in Posix.TTY : getattr ,
setattr , sendbreak , drain , flush , and flow .
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Extensions
These are extensions to the Basis library that are specific to SML/NJ. You
can find reference documentation to them in the "Special features of
SML/NJ" page via the SML/NJ home page[SML].

The Unsafe API
The Unsafe API is a collection of functions that bypass the normal safety
checks of the language and the Basis library. These functions are available
in the Unsafe structure. It provides:

• Access to the elements of arrays and vectors, including strings, without
the usual subscript range checks.

• Access to information about the memory representation of values.

• An interface to C functions in the runtime.

• Miscellaneous operations used internally by the compiler and associated
subsystems.

Unchecked subscripting is used internally by the array and vector functions
in the Basis library. Wherever possible you should design your code to make
use of the Basis functions. Using the unchecked operations directly puts
your program at risk of crashing.

Unsafe Vectors and Arrays
The following monomorphic vectors and arrays are available.
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Unsafe.CharVector

This operates on strings, which are vectors of characters.

Unsafe.Word8Vector

This operates on vectors of bytes.

Unsafe.CharArray
Unsafe.Word8Array

These operate on arrays of characters or bytes.

Unsafe.Real64Array

This operates on arrays of double precision reals. The C equivalent
would be the array type double[] .1

These structures conform to one of these two signatures.

signature UNSAFE_MONO_VECTOR =
sig

type vector
type elem

val sub : (vector * int) -> elem
val update : (vector * int * elem) -> unit
val create : int -> vector

end

signature UNSAFE_MONO_ARRAY =
sig

type array
type elem

val sub : (array * int) -> elem
val update : (array * int * elem) -> unit
val create : int -> array

end
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So you can see that you get to update elements of vectors in place just as you
can with arrays. The create functions create a vector or array of the given
length with uninitialised elements.

For arrays and vectors of other kinds of elements there are the structures
Unsafe.Vector and Unsafe.Array which conform to the following
signatures.

signature UNSAFE_VECTOR =
sig

val sub : (’a vector * int) -> ’a
val create : (int * ’a list) -> ’a vector

end

signature UNSAFE_ARRAY =
sig

val sub : (’a array * int) -> ’a
val update : (’a array * int * ’a) -> unit
val create : (int * ’a) -> ’a array

end

The vector create function creates a vector from a list. You have to supply
the length of the list as the first argument. The array create function
creates an array given a length and an initial value for each element.

Memory Representation Information
The Unsafe.Object structure provides some functions for getting
information about the memory representation. Read the source code in the
boot/Unsafe/object* files of the compiler. You won’t find much use for
this in your programs. The most useful functions look like being the
toWord32 , toInt32 functions which can convert a byte array to a 32 bit
integer. But there isn’t enough functionality here to be useful for serialising
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values into a wire protocol. (See the section called Integers in Chapter 3 for
serialising integers).

You could use this structure to estimate the size of objects in memory. Here
is my version of a function to estimate the size of a value, including
pointed-to values. I’ve used Oas an alias for Unsafe.Object .

(* Estimate the size of v in 32-bit words.
Boxed objects have an extra descriptor word
which also contains the length for vectors
and arrays.

*)
fun sizeof v =
let

fun obj_size obj =
(

case O.rep obj of
O.Unboxed => 1 (* inline 31 bits *)

| O.Real => 1+2

| O.Pair => tup_size obj
| O.Record => tup_size obj
| O.RealArray => tup_size obj

| O.PolyArray => arr_size obj

(* includes Word8Vector.vector
and CharVector.vector

*)
| O.ByteVector => 1 +

((size(O.toString obj)+3) div 4)

(* includes Word8Array.array
and CharArray.array

*)
| O.ByteArray => 1 +

((Array.length(O.toArray obj)+3) div 4)

| _ => 2 (* punt for other objects *)
)

(* Count the record plus the size of
pointed-to objects in the heap.

*)
and tup_size obj =
let
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fun sz obj =
if O.boxed obj
then

1 + (obj_size obj)
else

1
in

Vector.foldl
(fn (obj, s) => s + (sz obj))
1
(O.toTuple obj)

end

and arr_size obj =
let

fun sz obj =
if O.boxed obj
then

1 + (obj_size obj)
else

1
in

Array.foldl
(fn (obj, s) => s + (sz obj))
1
(O.toArray obj)

end
in

obj_size(O.toObject v)
end

This is a main function to try it out.

fun main(arg0, argv) =
let

fun show name v = print(concat[
"Size of ", name,
" = ", Int.toString(sizeof v),
" 32-bit words\n"])

in
show "integer" 3;
show "real" 3.3;
show "string" "abc";

show "pair" ("abc", 42);
show "record" {a = 1, b = 4.5, c = "fred"};
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OS.Process.success
end

See the section called Heap Object Layout in Chapter 7 for more information
on object layout in the heap.

The C Interface
The runtime includes a collection of C functions that implement the low-level
Basis operations such as those in the Posix structure. The SML code calls
these C functions using the functions in the Unsafe.CInterface structure.
These functions must be specially written to take arguments in the form of
SML values. This is not a general purpose interface to C functions. I only
mention it in case you think that it is for general purpose use.

Later versions of SML/NJ will include a general purpose interface for calling
any C function in a shared library which is loaded at run-time.

Miscellaneous Unsafe Operations
The Unsafe.blastRead and Unsafe.blastWrite functions are used to
serialise/deserialise entire data structures for writing to files. The
blastWrite function is expensive to run since it uses the garbage collector
to traverse the data structure to locate all values reachable from the root
value. You shouldn’t call it often to serialise small data structures. Instead it
is intended that you build up an entire data structure and then dump it into
a file at exit time.

The Unsafe.cast function can be used to cast a value to any other type.
This of course is very dangerous unless you know the underlying memory
representation. Most cases where you might want to do this are already
provided for. For example converting between bytes and characters is
provided in the Byte structure.
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The other functions in Unsafe should not be used. Some are used by
separate systems such as the Concurrent ML library which we will be using
later.

The Unsafe.Poll structure is not normally accessible and isn’t interesting
to us.

Signals
The Signals structure provides a basic interface to the Unix signal system.
It defines four basic signals that can be simulated on most operating
systems.

sigINT

On Unix, this corresponds to the SIGINT signal.

sigALRM

This is used by the interval timer in the IntervalTimer structure. You
can use this to generate periodic interrupts in your program.

sigTERM

On Unix, this corresponds to the SIGTERM signal.

sigGC

This is a pseudo-signal generated internally when a garbage collection
has been completed.

In addition the UnixSignal structure provides a few more signals found on
Unix systems. These are sigPIPE , sigQUIT , sigUSR1 , sigUSR2 , sigCHLD ,
sigCONT , sigTSTP , sigTTIN and sigTTOU . See the source code in the
boot/Unix/unix-signals*.sml files for more details.
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There may be more signals available on your platform than appear in
UnixSignal . In particular SIGHUPhas missed out on appearing in either
structure. You can fetch it yourself like this:

val sighup = valOf(Signals.fromString "HUP")

A complete list of the available signals can be printed with this code which
you can type to the top-level SML prompt.

app (fn s => print(concat[Signals.toString s, "\n"]))
(Signals.listSignals());

Here is a program to demonstrate setting up a simple interrupt handler. It
just prints a message and lets the program, which is an infinite loop,
continue.

fun int_handler(signal, n, cont) =
let
in

print "interrupt\n";
cont

end

fun main(arg0, argv) =
let

fun loop() = (Signals.pause(); loop())
in

Signals.setHandler(Signals.sigINT,
Signals.HANDLER int_handler);

loop();

OS.Process.success
end

The handler function must return a continuation. This will normally be the
third argument to the function. Continuations are described in more detail
in the section called Continuations in Chapter 6.

A signal handler function does not execute in the same kind of interrupted
state as a signal handler in C. The C-level handler queues the signal and
completes. A little later the SML-level handler is called as part of the normal
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execution of the program. So there are no restrictions on what you can do in
an SML signal handler. Also by manipulating the returned continuation you
can perform the equivalent of a C longjmp to anywhere else in the program.

The SMLofNJ API
The SMLofNJ structure is a miscellaneous collection of non-standard
functions supplied with the SML/NJ compiler. In version 110.0.7 it provides:

• the manipulation of continuations with a Scheme-like call/cc API.

• an interval timer to deliver a periodic trigger to an application.

• a little control over the garbage collector.

• execution time profiling.

• some operating system information.

• utilities for lazy evaluation of a function.

• weak pointers for the garbage collector.

• exporting the heap. This has already been discussed in the section called
Assembling the Hello World Program in Chapter 2.

• access to an exception history list for debugging.

Call/cc
The call/cc API is in the SMLofNJ.Cont structure. It is described in more
detail in the section called Continuations in Chapter 6.

The Interval Timer
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You can set the interval timer to produce alarm signals (Signals.sigALRM )
at periodic intervals. This can be used to trigger activity in your application.
The Concurrent ML library uses it to trigger pre-emptive scheduling of
threads so you won’t be able to use the interval timer if you are using
Concurrent ML. But if you aren’t you could write something like the
following program.

fun alarm_handler(signal, n, cont) =
let
in

print(concat["tick at ", Time.toString(Time.now()), "\n"]);
cont

end

fun main(arg0, argv) =
let

fun loop() = (Signals.pause(); loop())
in

Signals.setHandler(
Signals.sigALRM,
Signals.HANDLER alarm_handler);

SMLofNJ.IntervalTimer.setIntTimer
(SOME(Time.fromSeconds 1));

loop();

OS.Process.success
end

By returning a different continuation you can have your program switch to
different code on each clock tick.

Garbage Collection Control
The SMLofNJ.Internals.GC provides two functions for control of the
garbage collection. Calling SMLofNJ.Internals.GC.doGC n with n = 0
will trigger a minor collection. With a large value of n, say 10, it will trigger
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a major collection of all of the generations to reduce the memory usage to a
minimum.

You can also turn on or off the collection tracing messages. These are off by
default in your programs. Calling SMLofNJ.Internals.GC.messages
true will turn them on. You will see messages looking like

GC #0.1.2.5.6.43: (60 ms)
GC #1.2.3.6.7.66: (60 ms)

A message is produced for each major collection. The numbers show the
number of collections that have been performed in each generation. The
oldest generation is on the left. The right-most number is the number of
minor collections. The time is the duration of the major collection. The
messages can give you some idea of the amount of memory activity in your
program and the typical pause times during the collections.

There is more discussion on the SML/NJ implementation of garbage
collection in the section called Garbage Collection Basics in Chapter 7.

Execution Time Profiling
You access execution time profiling through the Compiler.Profile
structure, which is separate from the SMLofNJ structure. However the
profiling uses the low-level control functions in
SMLofNJ.Internals.ProfControl .

To get profiling you have to compile your program for profiling. Then when it
runs it must explicitly turn on the profiling. To compile with profiling using
the Compilation Manager you need an extra command. For the example
profile program:

> CM_ROOT=profile.cm sml
Standard ML of New Jersey, Version 110.0.7, September 28, 2000
- Compiler.Profile.setProfMode true;
- CM.make();
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It is a good idea to force the recompilation of all of your source when you do
this. A simple way to do this is to delete the CMdirectories in each of the
source directories of your program. This deletes the cached .bin files and
they have to be recompiled.

Here is the profile program which just sorts a large list.

fun main(arg0, argv) =
let

fun sort() =
let

val gen = Rand.mkRandom 0w123
val data = List.tabulate(100000,

(fn _ => gen()))
val sorted = ListMergeSort.sort (op >) data

in
()

end
in

(* SMLofNJ.Internals.GC.messages true; *)
Compiler.Profile.setTimingMode true;
sort();
Compiler.Profile.setTimingMode false;
Compiler.Profile.report TextIO.stdOut;

OS.Process.success
end

Here are the performance results on my 1GHz Athlon machine.

%time cumsec #call name
42.85 .18 1 Main.<tempStr>.main.main.sort.sort
26.19 .29 0 Major GC
23.80 .39 0 Minor GC

9.52 .42 100000 Main.<tempStr>.main.main.sort.sort.data
.00 .42 1 Main.<tempStr>.main.main

This shows the program spent 9% building the list of 100000 random
numbers, 42% in the sort, and 50% doing garbage collection of all of that
data. Memory usage peaked at 11MB. SML/NJ likes to use lots of heap space
to save on garbage collection. I can get some control over the peak heap size
by changing the allocation size used by the garbage collector. The default is
256KB. You can change this by adding a command line argument to the SML
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runtime in the script that runs the program. For example if I add
@SMLalloc=1024 then the allocation size is 1MB and the peak heap usage
goes up to 22MB but the collection time drops to 29%. If I reduce it to 100KB
then the peak usage is around 9MB but the collection rises to 64%.

Operating System Information
The SMLofNJ.SysInfo structure provides a collection of functions to return
the configuration of the compiler and the platform. If you know that it’s a
Unix system then the Posix API is likely to be available. If you want to know
the endian-ness then the target architecture will tell you. In the 110.0.7
version of SML/NJ the getOSVersion function does not work. It always
returns " <unknown>" .

Lazy Suspensions
Lazy suspensions allow you to "memoise" a function. This means that the
function is evaluated at most once. On subsequent calls the result from the
first call is returned. This could be useful to initialise an imperative data
structure only if actually needed at runtime.

In the getopt example of the section called Using a Hash Table in Chapter
2 the option table was built when the Global structure was compiled. It
appeared in the heap file. This would be inefficient if the table is very large.
Also if the data structure you want to build depends on some parameter
supplied at run-time then you need to build the data structure imperatively
after the program starts running. You can do this with a reference variable
but a suspension is more convenient.

The following example uses the string table structures from the section
called Using a Hash Table in Chapter 2.

structure Table:
sig
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val set: string * string -> unit
val get: string -> string option

end =
struct

open Common

type Table = string STRT.hash_table

val susp = SMLofNJ.Susp.delay(fn () =>
STRT.mkTable(101, NotFound): Table)

fun table() = SMLofNJ.Susp.force susp

fun set (k, v) = STRT.insert (table()) (k, v)
fun get k = STRT.find (table()) k

end

I’ve defined a Table structure with get and set functions. I’ve used an
unnamed signature constraint to only export these functions. The value
susp is built during the compilation of the structure and leaves a suspension
in the heap file. This suspension will be forced to a concrete value the first
time that either the get or set functions is called. This will cause the table
to be built. The same table will be used by all calls to the get and set
functions which is important since it is updated in place.

The type constraint on the mkTable call is needed to fix the type of the table
for the suspension. The value restriction rule of SML does not allow a value
at the level of a structure declaration to have a polymorphic type (i.e. one
with an unresolved type variable).

Weak Pointers
Normally the garbage collector deems a heap object to be garbage once all
pointers to the object have been deleted. Sometimes it is convenient to retain
a pointer to an object while still allowing the object to be collected. For
example you may have a cache of objects that you have fetched from some
file. If memory becomes tight you may want the objects to be removed from
the cache and collected since you can fetch them again if you really need

122



Chapter 4. The SML/NJ Extensions

them. (Unfortunately you can’t prioritise the collection. All weakly
referenced objects in a generation will be collected).

A weak pointer is a pointer that is ignored by the garbage collector when
deciding whether a heap object is garbage. Normal pointers are called strong
pointers. Once all of the strong pointers have disappeared the object can be
collected. Then all weak pointers to that object are marked invalid to
indicate that they now dangle. You can test if the weak pointer is still valid.

Another use for weak pointers is to do some finalisation after the object has
been collected. If you can arrange to scan all weak pointers after each
collection then you can detect which objects have been collected because
their weak pointers will be invalid. You can trigger a scan of the weak
pointers with a signal handler for the sigGC pseudo-signal. (See the section
called Signals).

There is a problem with weak pointers and compiler optimisation. Since,
with immutable data structures, copy by value and copy by reference are the
same, there can be some ambiguity about whether the various pointers are
all pointing to the same copy of an object. You should only use weak pointers
to reference variables. This ensures that there is no hidden replication of the
object pointed to by the reference variable.

Here is a mickey-mouse example that caches the Unix environment
variables in a global hash table for faster access. This of course assumes that
the environment isn’t changed while the program runs (which it probably
won’t do since there is no putenv operation).

structure Environ:
sig

val get: string -> string option
end =

struct
open Common
open SMLofNJ.Weak

type Table = string STRT.hash_table

val cache: (Table option) ref weak ref = ref (weak (ref NONE))
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fun table() : Table =
let

(* This takes a NAME=VALUE string *)
fun fill tbl env =
let

val ss = Substring.all env
val str = Substring.string
val fields = Substring.fields

(fn c => c = #"=") ss
in

case fields of
[n, v] => STRT.insert tbl (str n, str v)

| [n] => STRT.insert tbl (str n, "")
| _ => () (* unrecognisable *)

end

fun build() =
let

val tbl = STRT.mkTable(101, NotFound)
in

print "building\n";
app (fill tbl) (Posix.ProcEnv.environ());
cache := weak (ref (SOME tbl));
tbl

end
in

case strong (!cache) of
NONE => build() (* has been collected *)

| SOME rtbl =>
(

case !rtbl of
NONE => build() (* is not yet built *)

| SOME tbl => tbl (* table is available *)
)

end

fun get k = STRT.find (table()) k
end

Instead of a suspension as I did in the section called Lazy Suspensions I’ve
used a reference variable. With one of those I can have the variable
initialised to the NONEstate so that the table isn’t built until called for. The
table function fetches the table or builds/rebuilds it if it is not available.
The weak function creates a weak pointer to the reference. The strong
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function returns the reference if it is still available. Since the type of strong
is ’a weak -> ’a option the value in the case expression has the type
(Table option) option which gives us the three cases. After building
the table a weak reference to it is assigned to the cache. Note the extra ref
between the weak reference in the table. This is just to ensure that we only
have weak references to ref types.

Here is the main function that I use to test it. I build a big list in between
two calls to get an environment variable. This triggers a garbage collection
and I can see that the build is done twice. If I comment out the call to data
then the build only happens once.

fun main(arg0, argv) =
let

fun data() = ignore(List.tabulate(100000, fn n => n))
in

SMLofNJ.Internals.GC.messages true;
print(concat["The PATH is ",

valOf(Environ.get "PATH"), "\n"]);
data();
print(concat["The PATH is ",

valOf(Environ.get "PATH"), "\n"]);

OS.Process.success
end

The Exception History List
Getting access to the exception history list is a new feature which has crept
in to the compiler in the 110.0 version. It shows the source location where
the exception was raised. Here is an example of it in the top-level uncaught
exception handler.

fun main(arg0, argv) =
let

fun bad() = raise Fail "bye"
in

bad();
OS.Process.success
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end
handle x => (

toErr(concat["Uncaught exception: ",
exnMessage x, " from\n"]);

app (fn s => (print "\t"; print s; print "\n"))
(SMLofNJ.exnHistory x);

OS.Process.failure
)

The Socket API
There is fairly comprehensive API for socket programming in the compiler’s
Basis library. This is an SML/NJ extension that has gone undocumented
until now as far as I know.

You can find the source for the API in the boot/Sockets directory of the
compiler source. Start with the SOCKETsignature in the socket-sig.sml
file. The actual implementation starts with the shared material in the
PreSock structure in the pre-sock.sml file.

The Generic Socket Types
In the Socket structure (with signature SOCKET) we have the following
generic types.

type (’af, ’sock) sock
type ’af sock_addr

(* witness types for the socket parameter *)
type dgram
type ’a stream
type passive (* for passive streams *)
type active (* for active (connected) streams *)
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The clever thing here is the use of type parameters to distinguish between
different kinds of sockets. This lets the type checker do some checking of the
use of sockets. Internally a socket is represented by the following datatype in
the PreSock structure.

(* the raw representation of a socket
(a file descriptor for now) *)

type socket = int
datatype (’af, ’sock) sock = SOCK of socket

The type just includes the integer file descriptor for the socket. The type
variables are not actually used in the definition of a socket. They are only a
part of the logical framework of the program that is checked by the type
checker at compile time2.

The first type parameter to sock distinguishes the different address
families. All of the functions in the Socket structure accept a socket type,
such as (’a, ’b) sock , with any address family, as you would expect.
Address families are used at the time sockets are created. See the section
called A Simple TCP Client for an example. The Socket.AF structure
defines a type for address families and some functions to obtain values of the
type. Normally you would use the specialised types of the section called The
Specific Socket Types.

The second type parameter ’sock distinguishes between the different states
of a socket. The possible types are:

• dgram for a datagram (UDP) socket;

• passive stream for a stream (TCP) socket that will be used to accept a
connection but has not yet been connected, and

• active stream for a connected stream (TCP) socket.

Some functions in Socket only operate on passive or active streams. For
example

val accept: (’a, passive stream) sock ->
((’a, active stream) sock * ’a sock_addr)
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val listen: ((’a, passive stream) sock * int) -> unit

val sendVec: ((’a, active stream) sock * Word8Vector.vector buf)
-> int

The type parameters constrain you to ensure that you cannot call sendVec
on the same socket value that you passed to accept or listen . You can
however call sendVec on the value returned from accept .

Socket addresses are defined in Socket as being generic over address
families. But you will use more specific types with their own functions for
addresses in a specific family.

The Specific Socket Types
The socket types in the section called The Generic Socket Types are generic
over the address family. What you will actually use are sets of socket types
with the address family fixed. For example the INetSock structure defines a
type of socket with the address family fixed at AF_INET for the internet
protocols. The new types and values are:

datatype inet = INET

type ’a sock = (inet, ’a) Socket.sock
type ’a stream_sock = ’a Socket.stream sock
type dgram_sock = Socket.dgram sock

type sock_addr = inet Socket.sock_addr

Here a distinct type called inet has been defined, although it contains no
data. Because it is defined with a datatype it is guaranteed to be different
from any other type. This allows the type checker to ensure that you don’t
mix up sockets with different address families. The remaining types are
specialisations for the inet family. The type variable in the stream_sock
type will range over the types passive and active in the Socket
structure.
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The value INetSock.inetAF is an address family value, of type
Socket.AF.addr_family , should you need to specify the family explicitly.

The UnixSock structure provides types equivalent to those in INetSock but
with the address family fixed for Unix domain sockets.

Socket Addresses
The type sock_addr represents an address that you can bind a socket to.
The generic address, Socket.sock_addr , is parameterised by the address
family. If you look in the PreSock structure you will see that a socket
address is represented internally by a byte vector.

type addr = Word8Vector.vector
datatype ’af sock_addr = ADDR of addr

For each particular address family there is a specialised address type. For
example in the INetSock structure there is:

datatype inet = INET
type sock_addr = inet Socket.sock_addr

val toAddr : (NetHostDB.in_addr * int) -> sock_addr
val fromAddr : sock_addr -> (NetHostDB.in_addr * int)
val any : int -> sock_addr

The toAddr function will coerce an internet address and a port number to a
socket address which is specialised for the inet address family. The
fromAddr function will do the reverse. The any function uses the 0.0.0.0
internet address (the traditional INADDR_ANY) that you bind a server socket
to if you want it to accept connections from any source address. Its argument
is the port number.

To lookup an internet address you use the functions in the NetHostDB
structure. These provide the equivalent of the C library’s gethostbyname
and gethostbyvalue functions. The signature for this structure is:

signature NET_HOST_DB =
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sig
eqtype in_addr
eqtype addr_family
type entry
val name : entry -> string
val aliases : entry -> string list
val addrType : entry -> addr_family
val addr : entry -> in_addr
val addrs : entry -> in_addr list
val getByName : string -> entry option
val getByAddr : in_addr -> entry option

val getHostName : unit -> string

val scan : (char, ’a) StringCvt.reader ->
(in_addr, ’a) StringCvt.reader

val fromString : string -> in_addr option
val toString : in_addr -> string

end

You use the getByName or getByAddr functions to fetch a database entry,
equivalent to C’s struct hostent . They return NONE if the entry is not
found. The functions name through to addrs fetch the fields of an entry. The
fromString function will parse an address in the numeric formats a.b.c.d,
a.b.c, a.b or a. Where there is more than one digit the left digits are 8 bit
values and the last digit takes up the rest of the address. Hex numbers are
allowed with a 0x prefix, octal with a 0 prefix.

For the Unix address family you have in the UnixSock structure:

datatype unix = UNIX
type sock_addr = unix Socket.sock_addr

val toAddr : string -> sock_addr
val fromAddr : sock_addr -> string

The string is the path to the socket in the file system.
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A Simple TCP Client
This example program makes a TCP connection to a port and fetches one
line of response and prints it. You can test it against a server such as the
SMTP mail server on port 25 or the NNTP server on port 119. Here is the
central function. It’s fairly straightforward.

fun connect port =
let

val localhost =
valOf(NetHostDB.fromString "127.0.0.1")

val addr = INetSock.toAddr(localhost, port)
val sock = INetSock.TCP.socket()

fun call sock =
let

val _ = Socket.connect(sock, addr)
val msg = Socket.recvVec(sock, 1000)
val text = Byte.bytesToString msg

in
print text;
Socket.close sock

end
handle x => (Socket.close sock; raise x)

in
call sock

end
handle OS.SysErr (msg, _) => raise Fail (msg ^ "\n")

The recvVec function performs the C library recv() on the socket into a
buffer of 1000 bytes. Since we are expecting a text response the
bytesToString coerces the byte vector into a text string. I’ve wrapped the
connection phase into a function to make it easier to wrap an exception
handler around it. The handler closes the socket and reraises the exception.
This is overkill for such a simple program but it shows you what you would
need to do in a larger program. All errors from the socket functions raise
OS.SysErr exceptions. The exception handler for these translates them into
a simpler error message.

Here is the main program to call the connect function.

fun toErr msg = TextIO.output(TextIO.stdErr, msg)
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fun main(arg0, argv) =
let
in

case argv of
[port] =>

(case Int.fromString port of
NONE => raise Fail "Invalid port number\n"

| SOME p => connect p)

| _ => raise Fail "Usage: simpletcp port\n";

OS.Process.success
end
handle

Fail msg => (toErr msg; OS.Process.failure)

| x =>
(

toErr(concat["Uncaught exception: ",
exnMessage x, " from\n"]);

app (fn s => (print "\t"; print s; print "\n"))
(SMLofNJ.exnHistory x);

OS.Process.failure
)

A Simple TCP Server
This example program complements the simple client of the previous
section. It listens on a TCP socket and sends a simple text response to each
client that connects. It is a single threaded server. Here is the serve
function that runs the server.

fun serve port =
let

fun run listener =
let

fun accept() =
let

val (conn, conn_addr) = Socket.accept listener
in
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respond conn;
accept()

end

and respond conn =
let

val msg = "hello world from tcpserver\n"
val buf = {buf = Byte.stringToBytes msg,

i = 0, sz = NONE}
in

ignore(Socket.sendVec(conn, buf));
Socket.close conn

end
handle x => (Socket.close conn; raise x)

in
Socket.Ctl.setREUSEADDR(listener, true);
Socket.bind(listener, INetSock.any port);
Socket.listen(listener, 9);
accept()

end
handle x => (Socket.close listener; raise x)

in
run (INetSock.TCP.socket())

end
handle OS.SysErr (msg, _) => raise Fail (msg ^ "\n")

Again I have used functions to isolate the scope of exception handlers as well
as to implement the server loop. The run function sets up the socket to listen
for connections and runs a loop to accept each one. The socket is bound to a
given port but its address is set to 0.0.0.0 (INADDR_ANY) to accept from
any host. The listen function takes an integer backlog parameter, the same
as the C library listen() function.

Each accepted connection returns a new socket, called conn , and the address
of the connecting peer which I ignore. The respond function builds a buffer
to send to the client. The sendVec function performs the C library send()
function and returns its result which will be the number of bytes
successfully sent. In this simple server I ignore this. If there is actually an
error then the OS.SysErr exception will be raised. The buffer argument to
sendVec must be a record with this type:
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type ’a buf = {buf : ’a, i : int, sz : int option}

val sendVec: ((’a, active stream) sock * Word8Vector.vector buf)
-> int

The type variable ’a will be either a vector or an array of bytes depending on
the function you use. The signature of the sendVec function is shown. The i
field is the offset into the buffer where the send is to start. The sz field is the
optional length of the data to send. If it is NONEthen the data extends to the
end of the buffer. The standard Subscript exception is raised if the offset
and length don’t fit into the buffer.

The main function for this program is almost identical to the client. It just
gets a port number from the command line.

Servers with Multiple Connections
If you want to write a server to handle multiple connections then you can
either write it in a single-threaded manner using the poll functions in the
OS.IO structure or you can use the Concurrent ML library for a more
multi-threaded style.

To use polling you will need the Socket.pollDesc function:

val pollDesc : (’a, ’b) sock -> OS.IO.poll_desc

This will obtain a descriptor from the socket suitable for use with OS.IO .
Here is some example code for polling a set of sockets for reading or writing.

type ServerSock = Socket.active INetSock.stream_sock

datatype Handler = Handler of {
socket: ServerSock,
reader: ServerSock -> unit,
writer: ServerSock -> unit
}

fun poll (handlers: Handler list) =
let
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(* Convert to a list annotated with iodesc. *)
fun to_iodesc (Handler {socket, reader, writer}) =

(OS.IO.pollToIODesc(Socket.pollDesc socket),
socket, reader, writer)

val with_iodesc = map to_iodesc handlers

(* Generate a list of poll descriptors for reading
and writing.

*)
fun to_poll (Handler {socket, ...}) =

(OS.IO.pollIn o OS.IO.pollOut o Socket.pollDesc)
socket

(* Search for the matching handlers. *)
fun check_info poll_info =
let

val info_iodesc = OS.IO.pollToIODesc(
OS.IO.infoToPollDesc poll_info)

val handler = List.find
(fn arg => (#1 arg) = info_iodesc)
with_iodesc

in
case handler of

NONE => raise Fail "polled a non-existent socket!"

| SOME (iodesc, socket, reader, writer) =>
(

if OS.IO.isIn poll_info then reader socket else ();
if OS.IO.isOut poll_info then writer socket else ()

)
end

val info_list = OS.IO.poll(map to_poll handlers, NONE)
in

app check_info info_list
end

I’ve defined a record type for a handler that maps a socket to reader and
writer functions. These functions will be called when the socket is ready for
reading or writing respectively. My poll function takes a list of handlers
and calls the readers and writers for each socket that is ready for I/O. The
first step is to extend the handler data with an OS.IO.iodesc value. This is
the only type of value used in OS.IO that supports the equality operator so
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that I can use it for looking up the handler. The Socket structure only
provides for producing an OS.IO.poll_desc which I have to back-convert
to an iodesc .

The to_poll function separately converts each socket to a
OS.IO.poll_desc type. The pollIn and pollOut mark the descriptor for
polling for input and output respectively. I then pass the descriptors to the
OS.IO.poll function to get the list of resulting info records in info_list .
I’m not using a timeout here.

The check_info function examines each info record. First I extract the
iodesc from the info record. Then I search the with_iodesc list for a
record with the same iodesc . The argument to the predicate is an
annotated tuple. I use the #1 notation to get the first member of the tuple
which is the iodesc . The isIn function tests if the info record indicates a
socket ready for reading. If so then I call the reader. Similarly for the writer.

Here is part of the modified serve function from the server in the section
called A Simple TCP Server. It’s just a trivial example of calling the poll
function.

fun serve port =
let

fun run listener =
let

fun accept() =
let

val (conn, conn_addr) = Socket.accept listener
in

poll [Handler {
socket = conn,
reader = reader,
writer = writer
}];

accept()
end

and writer conn =
let

val msg = "hello world from tcpserver\n"
val buf = {

buf = Byte.stringToBytes msg,
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i = 0,
sz = NONE
}

in
print "responding to a client\n";
ignore(Socket.sendVec(conn, buf));
Socket.close conn

end
handle x => (Socket.close conn; raise x)

and reader conn = ()

A serious server would need to maintain a data structure of current
connections. This might be a list of records similar to Handler . However you
will get a nicer result if you use Concurrent ML to write the server in a
multi-threaded style. This will have a reader and a writer thread for each
connection. See Chapter 6.

Notes
1. There should be a Unsafe.Real64Vector but it isn’t implemented yet.

2. I’ve corrected the order of the type variables which is a typo in
PreSock.sock that has no effect.

137



Chapter 4. The SML/NJ Extensions

138
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SML/NJ comes with a collection of utility libraries that are separate from
the compiler. These provide modules for the following main areas.

• Data structures such as hash tables, dynamically resizing arrays, bit
vectors, queues, maps and trees and property lists.

• Algorithms such as list sorting, searching, numeric formatting, random
numbers.

• Utility modules for simple parsing, and miscellaneous I/O operations.

• Regular expressions.

• Parsing HTML 3.2 markup.

• Some Unix and socket utilities.

You can find these in the smlnj-lib source directory. At the moment these
modules are underdocumented. There is some documentation in the Doc
directory but it is mainly reference material which describes the API. For
full details you will need to look through the source files.

In the following sections I will describe the modules briefly and give
examples for those that I think will be the most useful.

Data Structures

Trees, Maps and Sets
The major data structure (outside of lists) is the tree. The utility library
provides an implementation of red-black trees with functional behaviour.
This means that an update of a tree produces a new tree leaving the original
unchanged.
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You might think that producing a new updated tree would be expensive as it
seems to require copying the whole tree. But that copying is mostly by
reference. Figure 5-1 shows what you get after updating a functional binary
tree. In this diagram the node D has been replaced with a new node D’. This
requires that the parent node C be updated with the new reference to D’.
The updates propagate up the tree to the root at A’ each producing a copy of
the updated node. But no more nodes will be copied than the height of the
tree. All other nodes will be shared. If the application drops the reference to
node A then the garbage collector will reclaim the old nodes A, C and D. In
the mean-time the application has access to both the old and new versions of
the tree which can be useful (e.g. for undoing the update).

Figure 5-1. Updating a Tree.

As long as the tree stays reasonably balanced then the height of the tree
stays minimal and lookups and updates are cheapest. The red-black
algorithm adjusts the tree after each update to keep it close to balanced. The
algorithm is fairly complex. A generic implementation is provided in the
RedBlackMapFn functor in the redblack-map-fn.sml source file.

functor RedBlackMapFn (K : ORD_KEY) :> ORD_MAP where Key = K =
...

signature ORD_KEY =
sig

type ord_key

val compare : ord_key * ord_key -> order
end
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...
datatype order = LESS | EQUAL | GREATER

This functor can be specialised for a key of any ordered type. The ORD_KEY
signature describes the key type. The order type is predefined in the SML
Basis. The resulting structure satisfies the ORD_MAPsignature defined in the
ord-map-sig.sml file. This signature describes the tree operations such as
insert , remove etc.

The library then goes on to use red-black trees to implement sets. A set is
just a map from a domain to a boolean value (which is always true for
members of the set). But for efficiency a separate implementation of
red-black sets is provided in the RedBlackSetFn functor.

Next the library provides some specialisations of these red-black sets and
maps for various keys. For keys of int and word the code is re-implemented,
presumably for efficiency. For other key types such as atoms the functor is
specialised.

structure AtomRedBlackMap =
RedBlackMapFn (

struct
type ord_key = Atom.atom
val compare = Atom.compare

end)

An atom is a string paired with a hash value so that equality can be tested
very quickly by first comparing the hash values. The library’s
implementation of atoms also ensures that all equal strings share the same
atom by reference. They are useful in the symbol tables of compilers and any
similar application.

Other kinds of maps are also implemented. The BinaryMapFn functor in the
binary-map-fn.sml source file also keeps the tree reasonably balanced.
The implementation says "The main advantage of these trees is that they
keep the size of the tree in the node, giving a constant time size operation."
Matching implementations for sets and integer and atom keys are provided.
You can also try out the SplayMapFn functor which does it with splay trees
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and the ListMapFn functor which does it with sorted lists. These all conform
to the ORD_MAPand ORD_SETsignatures so they are interchangable.

To demonstrate functional maps here is a test program that reads pairs of
numbers from a file and makes a map of them. The map is then printed out.

structure Main=
struct

structure Map = IntRedBlackMap

fun toErr s = TextIO.output(TextIO.stdErr, s)

fun read_file file : int Map.map =
let

val istrm = TextIO.openIn file

(* Read a pair of ints on a line and loop.
Empty lines are ignored. Other junk is fatal.

*)
fun get_pairs map_in lnum =
(

case TextIO.inputLine istrm of
"" => (TextIO.closeIn istrm; map_in) (* eof *)

| line =>
let

val tokens = String.tokens Char.isSpace line
in

case map Int.fromString tokens of
[] => get_pairs map_in (lnum+1)

| [SOME a, SOME b] =>
get_pairs (Map.insert(map_in, a, b)) (lnum+1)

| _ => raise Fail (concat["Invalid data on line ",
Int.toString lnum])

end
)
handle x => (TextIO.closeIn istrm; raise x)

in
get_pairs Map.empty 1

end
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and show_pairs pairs =
let

fun show (a, b) = print(concat[
Int.toString a, " => ", Int.toString b, "\n"])

in
Map.appi show pairs

end

fun main(arg0, argv) =
(

case argv of
[file] =>

(
show_pairs(read_file file);
OS.Process.success

)

| _ =>
(

print "Usage: intmap file\n";
OS.Process.failure

)
)
handle x =>
(

toErr(exnMessage x); toErr("\n");
OS.Process.failure

)

val _ = SMLofNJ.exportFn("intmap", main)
end

Hash Tables
A very different kind of map is the hash table. The implementation is
imperative meaning that the table is updated in place. See the section called
Using a Hash Table in Chapter 2 for an example of using a hash table to
map from strings to strings.

The hash function that is used is defined in the HashString structure in the
hash-string.sml file. It implements the recursion (h = 33 * h + 720
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+ c) over the characters of the string. The same hash function is used for
atoms.

Vectors and Arrays
The utility library provides three useful kinds of arrays in addition to the
array types defined in the Basis library (see the section called Arrays and
Vectors in Chapter 3).

• There is a monomorphic dynamic array functor which automatically
grows in size to accomodate the data.

• There is a BitArray structure that stores bits compactly in bytes. It
provides all of the standard array operations. In addition there are
bit-operations like and , or and shift over arrays. See the
bit-array.sml source file for more details. There is a matching
BitVector structure for immutable bit vectors.

• There is an Array2 structure for polymorphic two-dimensional arrays.
See the array2.sml source file for more details.

The dynamic array grows by at least doubling in size as needed to
accomodate all of the elements that have been referenced. This doubling
requires copying the original array. The elements are stored internally in a
reference to an array so the growth is imperative. Newly created elements
are initialised with a default value. The module is a functor which constructs
the dynamic array from a monomorphic array.

functor DynamicArrayFn (A : MONO_ARRAY) : MONO_DYNAMIC_ARRAY

signature MONO_DYNAMIC_ARRAY =
sig

type elem
type array

val array: (int * elem) -> array
val subArray: array * int * int -> array
val fromList: elem list * elem -> array
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val tabulate: int * (int -> elem) * elem -> array
val default: array -> elem
val sub: array * int -> elem
val update: array * int * elem -> unit
val bound: array -> int
val truncate: array * int -> unit

end

The signature MONO_ARRAYis predefined in the Basis library. It
characterises any type that can be made to behave like an imperative array
(see the section called Arrays and Vectors in Chapter 3). The
MONO_DYNAMIC_ARRAYsignature provides a restricted set of operations on
dynamic arrays which currently omits the iterator operations. See the source
file mono-dynamic-array-sig.sml for more details on the operations.

Here is an example of creating a dynamic array of 1000 real numbers
initialised to zero (the default value).

structure DynRealArray = DynamicArrayFn(Real64Array)

val reals = DynRealArray.array(1000, 0.0)

There is a MonoArrayFn functor which is a little utility for creating array
structures for DynamicArrayFn . For example, since there is no predefined
IntArray structure you could write

structure DynIntArray = DynamicArrayFn(MonoArrayFn(type elem = int))

Queues and Fifos
The utility library implements first-in-first-out queues in both the functional
and imperative styles. The functional ones are called fifos and the
imperative ones are called queues (for no special reason).

The fifo implementation is in the Fifo structure in the fifo.sml source
file. The queue implementation is in the Queue structure in the queue.sml
source file. It’s actually just a wrapper for a fifo stored in a reference.
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The implementation of fifos is a little tricky for a typical functional language
like SML. It requires access to both ends of a list. But SML only provides
cheap access to the front of a list. If you naively enqueued a value by
appending it to the end of a list that would require copying the entire list
which would be ridiculously expensive.

The solution is to split the list into front and rear halves with the rear half
in reverse. This moves the end of the fifo to the front of a list, as shown in
Figure 5-2.

Figure 5-2. A Fifo as a Pair of Lists.

Elements can be dequeued from the front of the fifo by just removing them
from the front of the ’front’ list. Elements can be enqueued to the rear of the
fifo by adding them to the front of the ’rear’ list. When the front list becomes
empty then the elements in the rear list are transferred to it. This still
requires copying a list but much less often than the naive implementation
above. A detailed analysis of the performance of this solution can be found in
[Okasaki]. It turns out that the average time to enqueue or dequeue an
element is O(1), that is, effectively constant.
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Property Lists
A property list (plist) is a list of key-value pairs that can be attached to or
associated with some value. The Lisp ([Steele]) language has had plists since
its beginning in 1959. In Common Lisp they are only used for annotating
symbols. The SML design allows you to annotate any base value such as a
node in a tree. You can add or remove properties from the list so they are
naturally imperative.

The utility library has an implementation of property lists in the PropList
structure of the plist.sml source file. A key can appear only once in a
property list but it can appear in any number of property lists. In Lisp the
keys would typically be Lisp symbols but in SML any type that supports
equality will do. The design provides a more abstract interface to a property.
Each property is represented by a group of functions that access the
property. The actual implementation of the key is an internal detail. Here is
the signature of the PropList structure.

signature PROP_LIST =
sig

type holder

val newHolder : unit -> holder

val clearHolder : holder -> unit

val sameHolder : (holder * holder) -> bool
(* returns true, if two holders are the same *)

(* newProp (selHolder, init) *)
val newProp : ((’a -> holder) * (’a -> ’b)) -> {

peekFn : ’a -> ’b option,
getFn : ’a -> ’b,
setFn : (’a * ’b) -> unit,
clrFn : ’a -> unit

}

val newFlag : (’a -> holder) -> {
getFn : ’a -> bool,
setFn : (’a * bool) -> unit

}
end
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A holder , unsurprisingly, holds one property list. To associate a property
list with a value you must be able to write a function that maps from the
value to a holder. This function is called selHolder in the signature. How
you write this is up to you. For example if you were attaching property lists
to nodes in a tree you would simply include a holder as one of the fields of a
node. The selHolder function would then just select the field from a node.
The ’a type variable represents the type of the annotated value and ’b is
the type of the property’s value.

The newHolder function creates a new empty holder. The clearHolder
function deletes all of the properties in a holder.

The newProp function defines a new property. The property is represented
by the four access functions: peek, get, set and clear. These operate in terms
of the annotated value so you have to supply the selHolder function to
translate the annotated value to the holder. The property is restricted to
appear only in plists that can be selected by the selHolder function. This
usually means it is restricted to the plists of one annotated type.

The init function is used to create an initial value for the property should
you try to get the property value before it is set. This initial value is allowed
to depend on the annotated value for more flexibility.

The newFlag function makes a specialised kind of property that has no
value. You only test if it is present or absent in the plist. The get function
returns true if it is present.

Here is a simple demonstration of some properties. Where this
demonstration differs from other kinds of data structures is that the set of
properties is completely dynamic. You can invent new properties on the fly
rather than just having the fixed number of fields in a record. Accessing
these properties will be a bit slow though. First I define a set of people and
some properties for them.

structure PL = PropList

(* Associate a plist holder with each person. *)
val people: PL.holder STRT.hash_table = STRT.mkTable(101, NotFound)
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(* Add someone to the table. *)
fun define name = STRT.insert people (name, PL.newHolder())

(* Define some properties.
Weight is a real measure in kilograms. Father is a string.

*)
val weight_prop = PL.newProp (STRT.lookup people, fn _ => 0.0)
val father_prop = PL.newProp (STRT.lookup people, fn _ => "unknown")

(* Functions to set and get the properties. *)
fun set prop (name, value) =
let

val {peekFn, getFn, setFn, clrFn} = prop
in

setFn(name, value)
end

fun get prop name =
let

val {peekFn, getFn, setFn, clrFn} = prop
in

getFn name
end

The people are represented by a hash table that maps a name to a plist
holder. (See the section called Using a Hash Table in Chapter 2 for details of
my STRTstructure). The set and get functions are polymorphic enough to
work for all properties. Unfortunately the type of a property is not named in
the PROP_LIST signature so I end up having to write out all of the fields in
the property record each time.

Here is a demonstration of the use of these functions. I define some people,
set some properties and then dump them all.

val names = ["fred", "wilma", "barney", "betty", "wilma",
"pebbles", "bambam"]

fun show_father name = print(concat[
name, "\thas father ",
get father_prop name,
"\n"])
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fun show_weight name = print(concat[
name, "\thas weight ",
Real.toString(get weight_prop name),
"kg\n"])

fun run() =
let
in

app define names;

app (set father_prop) [("pebbles", "fred"),
("bambam", "barney")
];

app (set weight_prop) [("fred", 111.0),
("wilma", 73.0),
("barney", 82.5),
("betty", 68.5),
("pebbles", 15.1),
("bambam", 18.7)
];

app show_father names;
app show_weight names;
()

end

What is especially interesting about SML plists is how they are
implemented. A list in SML must always have elements of the same type.
But property lists manage to have elements of different types and new types
of elements can be added at any time. How do they do it?

If you were to implement something like this in an object-oriented language
such as C++ or Java you would define a base class for a plist element. Then
you would define a subclass for each type of element you want in the list. You
can use run-time type identification ("downcasting") to extract a property’s
value. A subclass defines a subtype of the base class and you can use any
subtype anywhere that its base type is used. This is how you do
polymorphism in object-oriented languages.

But SML does not provide subtyping. Normally you have to define a datatype
that represents the union of all of the subtypes you are going to use. This
doesn’t have the flexibility or extensibility of the object-oriented paradigm.
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But there is a way around this. There is a dirty little trick you can do with
exceptions in SML that provides a great big loophole in the type checking.
An exception declaration declares a constructor that coerces some type to the
special type exn . For example this declaration

exception Error of string

declares the constructor function

val Error: string -> exn

You can think of the exn type as being like a datatype where each exception
declaration adds a new branch, no matter where the declaration appears in
your program. The exn type is an extensible type. From another point of
view, the Error declaration above lets you use a string type anywhere an
exception type is allowed so it effectively declares the string type as a
subtype of exn .

Exceptions have one more quirk up their sleeve. An exception declaration is,
to use the jargon, generative. This means that each declaration creates a new
exception each time that it is executed. For example if you have an exception
declaration inside a function then each time that function is called a new
distinct exception is created, even though the constructor name is the same.
This is what lets you define new subtypes dynamically.

Here is an example where the properties are defined statically using
exceptions.

type PList = exn list

exception PFruit of string
exception PNum of int

val fruit = [PFruit "apple", PNum 5]

fun get_fruit [] = NONE
| get_fruit (PFruit f::_) = SOME f
| get_fruit (_::rest) = get_fruit rest
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The list fruit contains some properties. The get_fruit will find and
return the value of the PFruit property. This all works the same way as if I
had written

datatype PList =
PFruit of string

| PNum of int

This next example creates properties dynamically.

fun new_prop dflt =
let

exception E of ’a

fun get [] = NONE
| get (E v::_) = SOME v
| get (_::rest) = get rest

fun set props v = (E v)::props

fun dummy() = E dflt
in

(get, set)
end

val (get_colour, set_colour) = new_prop "colour"
val props2 = set_colour fruit "red"

val (get_weight, set_weight) = new_prop 0.0
val props3 = set_weight props2 0.75

fun report() =
(

print(concat[
"The colour is ", valOf(get_colour props3),
" and the weight is ",
Real.toString(valOf(get_weight props3)),
"\n"])

)

Every time the new_prop function is called the exception declaration will be
executed. This will define a new exception which is known locally by the
name E. This new exception is captured by the get and set functions which
provide the only access to it. I’ve had to include an extra dummy argument

152



Chapter 5. The Utility Libraries

to let me constrain the type of the value for each property. Without it, the
type ’a is completely unconstrained and the type checking fails with the
notorious value restriction message:

dyn.sml:36.5-36.34 Warning: type vars not generalized because of
value restriction are instantiated to dummy types (X1,X2,...)

dyn.sml:37.5-37.34 Error: operator and operand don’t agree [tycon mismatch]
operator domain: ?.X1
operand: string
in expression:

(set2 fruit) "red"

By including the dflt argument and the dummyfunction I constrain the
type of the property value to be the same as that of the dflt argument. So
when I write (new_prop "colour") the get_colour and set_colour
functions are known to work on strings. In a more complete example the
dflt argument would be useful as a default or initial value for the property.

With this exception trick and property lists you can build up a nice little
prototype-based object system along the lines of the Common Lisp Object
System (CLOS)[Steele].

Algorithms
This section describes the algorithms in the Util directory of the SML/NJ
library.

Sorting and Searching
The utility library provides a functional polymorphic merge-sort for lists. It
is in the ListMergeSort structure of the list-mergesort.sml source file.
Here is the signature.

signature LIST_SORT =
sig
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val sort : (’a * ’a -> bool) -> ’a list -> ’a list
(* (sort gt l) sorts the list l in ascending order using the

* “greater-than” relationship defined by gt.
*)

val uniqueSort : (’a * ’a -> order) -> ’a list -> ’a list
(* uniquesort produces an increasing list, removing equal

* elements
*)

val sorted : (’a * ’a -> bool) -> ’a list -> bool
(* (sorted gt l) returns true if the list is sorted in ascending

* order under the “greater-than” predicate gt.
*)

end

Here is an example of their use.

val strings = [ "fred",
"wilma",
"barney",
"betty",
"wilma",
"pebbles",
"bambam"

]

fun sort_strings (data: string list) =
(

ListMergeSort.sort (op >) data
)

fun unique_strings (data: string list) =
(

ListMergeSort.uniqueSort String.compare data
)

The expression (op >) has an ambiguous overloaded type. The compiler has
to be able to decide the type at compile time so it can’t be polymorphic over
all types with a greater-than operator. In sort_strings the type is fixed at
string comparison by the context. I could have been more explicit and
written String.> for the operator.
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The unique_strings function removes duplicate strings from the list. The
family of compare functions for the basic types return the three-way
comparison: LESS, EQUALor GREATER.

If you are working with arrays there is a quick-sort implementation in
ArrayQSort with the following signature. It sorts an array in-place so it’s
imperative. It uses the compare functions such as the String.compare I
mentioned above.

signature ARRAY_SORT =
sig

type ’a array

val sort : (’a * ’a -> order) -> ’a array -> unit
val sorted : (’a * ’a -> order) -> ’a array -> bool

end

A more abstract version of this for any array-like types is provided by this
functor.

functor ArrayQSortFn (A : MONO_ARRAY) : MONO_ARRAY_SORT

signature MONO_ARRAY_SORT =
sig

structure A : MONO_ARRAY

val sort: (A.elem * A.elem -> order) -> A.array -> unit
val sorted: (A.elem * A.elem -> order) -> A.array -> bool

end

Once you’ve sorted your array you can do a binary search on it.

functor BSearchFn (A : MONO_ARRAY) : sig

structure A : MONO_ARRAY

(* binary search on ordered monomorphic arrays. The comparison
function cmp embeds a projection function from the element type
to the key type.

*)
val bsearch : ((’a * A.elem) -> order)

-> (’a * A.array) -> (int * A.elem) option
end
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The first argument to bsearch is the comparison function. It compares the
key you are searching for with an element in the array. For example the
array element might be a pair and you want to compare the key against the
first element of the pair. The second is a pair of the key to search for and the
array. If the array element is found then its index and value is returned.
Here is an example of table lookup using binary search. The table is "static"
i.e. built and sorted before being saved to the heap.

local
datatype Gender = Male | Female

type Pair = string * Gender

(* Compare two pairs. *)
fun compare ((n1, _), (n2, _)) = String.compare(n1, n2)

structure PairArray = MonoArrayFn(type elem = Pair)
structure Searcher = BSearchFn(PairArray)
structure Sorter = ArrayQSortFn(PairArray)

val gender = [ ("fred", Male),
("wilma", Female),
("barney", Male),
("betty", Female),
("wilma", Female),
("pebbles", Female),
("bambam", Male)

]

val sorted_gender = PairArray.fromList gender
val _ = Sorter.sort compare sorted_gender

in
fun find_gender name =
let

(* Compare a key with a pair *)
fun cmp (key, (n, _)) = String.compare(key, n)

in
case Searcher.bsearch cmp (name, sorted_gender) of

NONE => NONE
| SOME (_, (_, g)) => SOME g

end

fun show_gender Male = "male"
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| show_gender Female = "female"
end

Since BSearchFn needs a MONO_ARRAYI have to be consistent and use
ArrayQSortFn too. The following code, for example, doesn’t work.

val sorted_gender = Array.fromList gender
val _ = ArrayQSort.sort compare sorted_gender

Error: case object and rules don’t agree [tycon mismatch]
operator domain: string * PairArray.array
operand: string * (string * Gender) array
in expression:

(Searcher.bsearch cmp) (name,sorted_gender)

The issue is that PairArray.array is an opaque type of unknown
implementation whereas ArrayQSort.sort works on the specialised type
Pair array . The two are different types as far as the compiler can tell.

Formatted Strings
The utility library provides a format function which emulates the C
sprintf function. It appears in the Format structure of the format.sml
source file. Here is the signature.

signature FORMAT =
sig

datatype fmt_item
= ATOM of Atom.atom
| LINT of LargeInt.int
| INT of Int.int
| LWORD of LargeWord.word
| WORD of Word.word
| WORD8 of Word8.word
| BOOL of bool
| CHR of char
| STR of string
| REAL of Real.real
| LREAL of LargeReal.real
| LEFT of (int * fmt_item) (* left justify in field *)
| RIGHT of (int * fmt_item) (* right justify in field *)
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exception BadFormat (* bad format string *)
exception BadFmtList (* raised on type mismatch *)

val format : string -> fmt_item list -> string
val formatf : string -> (string -> unit) -> fmt_item list -> unit

end

The first argument to the format function is a printf-style format string. In
place of the C varargs mechanism your values to be printed must be
wrapped in the fmt_item datatype. The formatf function can be used to
print the string as it is being formed by making its second argument the
TextIO.print function.

The formats that are recognised have the format

"% <flags> <width> <prec> <type>"

(without the white space) or "%%" for a literal percent character. The flags
are listed in Table 5-1. You can have more than one flag. The width is a
decimal integer. The precision value is only allowed for real number formats.

Table 5-1. Format flags.

" " A blank character means put a blank in the sign field for positive
numbers. Negative signs will appear as usual.

+ Put a plus sign for positive numbers.
- Put a minus sign for negative numbers.
~ Put a tilde for negative numbers. This includes any exponent.
# Include a base indicator. This means "0" for octal numbers and

"0x" for hexadecimal numbers.
0 Pad the number with zeros on the left.

The type characters are listed in Table 5-2.
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Table 5-2. Format types.

d Signed decimal.
X Uppercase hexadecimal.
x Lowercase hexadecimal.
o Octal.
c Char.
s String.
b Bool.
E Scientific notation with an uppercase exponent.
e Scientific notation with a lowercase exponent.
f Floating point.
G Automatic choice of E or f.
g Automatic choice of e or f.

Here is a simple example.

structure F = Format

fun test_format() =
(

F.formatf
"A decimal %d, some hex %#08x and some real %.4f\n"
print
[F.INT ~23, F.WORD 0wxbeef, F.REAL 3.14159265]

)

It produces this output.

A decimal -23, some hex 0x00beef and some real 3.1416

Note that the 0x is counted in the width of the hexadecimal field but that’s
they way it happens in the C printf too.

To go with the format function there is a scan function, in the Scan
structure. Here is the signature.
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signature SCAN =
sig

datatype fmt_item
= ATOM of Atom.atom
| LINT of LargeInt.int
| INT of Int.int
| LWORD of LargeWord.word
| WORD of Word.word
| WORD8 of Word8.word
| BOOL of bool
| CHR of char
| STR of string
| REAL of Real.real
| LREAL of LargeReal.real
| LEFT of (int * fmt_item) (* left justify in field *)
| RIGHT of (int * fmt_item) (* right justify in field *)

exception BadFormat (* bad format string *)

val sscanf : string -> string -> fmt_item list option
val scanf : string -> (char, ’a) StringCvt.reader

-> (fmt_item list, ’a) StringCvt.reader

end

Although it is not obvious, the fmt_item type in the Scan structure is the
same one as in the Format structure, not just different types with the same
name. So you can use them interchangably. In the current implementation
flags and field widths in the format string are ignored.

The scanf function is designed to work with the StringCvt scanning
infrastructure (see the section called Text Scanning in Chapter 3). The
sscanf function is just defined as scanf applied to strings using
StringCvt.scanString . If the return value is NONE then the scan failed.
Here is a simple function to test sscanf .

structure S = Scan

fun test_scan() : unit =
let

val items = valOf(S.sscanf "%d %s %f" "123 abc 3.45")

val display = ListFormat.fmt {
init = "[",
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sep = " ",
final = "]",
fmt = show_item
} items

in
print display; print "\n"

end

and show_item (S.INT n) = Int.toString n
| show_item (S.STR s) = s
| show_item (S.REAL r) = Real.toString r
| show_item _ = "unknown"

This example also demonstrates a use of the utilities in the ListFormat
structure. See the list-format-sig.sml source file for more details.

Here is a demonstration of scanf . It will continue to read until it finds three
integers separated by white space, even over several lines. Any other input
will result in failure.

fun test_scan_io() =
let

val _ = print "Enter 3 integers\n"
in

case TextIO.scanStream (S.scanf "%d %d %d") TextIO.stdIn of
SOME items => (

print "got ";
print (ListFormat.listToString show_item items);
print "\n"
)

| NONE => print "The reading failed\n"
end

Miscellaneous Utilities
The recommended random number generator is Random in the random.sml
source file. According to the blurb in the source file it uses a
subtract-with-borrow (SWB) generator as described in Marsaglia and
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Zaman, "A New Class of Random Number Generators," Ann. Applied Prob.
1(3), 1991, pp. 462-480. Here is an extract from the signature.

signature RANDOM =
sig

type rand
(* the internal state of a random number generator *)

val rand: (int * int) -> rand
(* create rand from initial seed *)

val toString: rand -> string
val fromString: string -> rand

val randInt: rand -> int
(* generate ints uniformly in [minInt,maxInt] *)

A generator has the type rand . You can create as many generators as you
like. A generator is updated imperatively by functions like randInt . The
toString and fromString functions would be useful to save the state of a
generator in a file.

The IOUtil structure in io-util.sml contains some functions which
perform a work function with the standard input or output redirected to a
file. They match some utility functions available in the Scheme language.
The functions in the PathUtil structure in path-util.sml search for files
in lists of directories in the Unix PATH format.

The Iterate structure in iterate.sml provides some simple functions for
looping by performing a function multiple times. It includes a generic "for"
loop, in case you’re hankering for one.

The TimeLimit structure in time-limit.sml provides a function to
perform a work function and interrupt it if it runs for too long. It uses the
SML/NJ interval timer facility (see the section called The Interval Timer in
Chapter 4) which uses the SIGALRMsignal.
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Don’t use TimeLimit with CML
Because it uses SIGALRM, which is the same signal that the CML library
uses, it will ruin the pre-emption of threads.

The remaining few structures in the utility library are oriented towards
compiler writers. The GraphSCCFn functor in graph-scc.sml is a
strongly-connected components algorithm for finding cycles in directed
graphs. The "uref" source files provide special-purpose reference types that
look like they would be useful for type-checking algorithms in compilers. The
ParserComb structure in parser-comb.sml provides some utility
functions for hand-written recursive-descent parsers but ML-Lex and
ML-Yacc would probably be easier to use.

Avoid the IntInf structure in int-inf.sml which implements arbitrary
precision integers. A more polished implementation is part of the Basis
library (see the section called Integers in Chapter 3).

Regular Expressions
This section describes the regular expression library in the RegExp directory
of the SML/NJ library. This directory includes a README file which has
some brief notes on using the library. This section shows some examples.

To use the library your CM files will need to include regexp-lib.cm (from
the same place you get your smlnj-lib.cm file).

The Pieces of the Library
The regular expression library is designed to be very flexible. It is divided
into:
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• a front-end section that implements the syntax of regular expressions;

• a back-end section that implements the matching of regular expressions;

• a glue section that joins the two together.

The idea is that you can have more than one style of syntax for regular
expressions e.g. Perl versus grep. The different syntaxes can be combined
with different implementations of the matching algorithm. You can even feed
in your own regular expressions in the internal format directly to the
matching algorithms.

At the time of writing there is only one front-end which is for an Awk-like
syntax. There are two back-ends. One uses back-tracking and the other
compiles the regular expression to a deterministic finite-state automaton
(DFA). The back-tracking matcher is described as "slow, low memory
footprint, low startup cost". The DFA matcher is described as "fast, but
memory-intensive and high startup cost (the cost of constructing the
automaton in the first place)".

The front-end and back-end are combined together using the RegExpFn
functor from the Glue/regexp-fn.sml source file. For example

structure RE = RegExpFn(structure P=AwkSyntax
structure E=BackTrackEngine)

The resulting structure has this signature.

signature REGEXP =
sig

(* The type of a compiled regular expression. *)
type regexp

(* Read an external representation of a regular expression
from a stream.

*)
val compile: (char,’a) StringCvt.reader ->

(regexp, ’a) StringCvt.reader

(* Read an external representation of a regular expression
from a string.
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*)
val compileString : string -> regexp

(* Scan the stream for the first occurence of the regular expression.
*)
val find: regexp ->

(char,’a) StringCvt.reader ->
({pos: ’a, len: int} option MatchTree.match_tree,’a)

StringCvt.reader

(* Attempt to match the stream at the current position with the
regular expression.

*)
val prefix: regexp ->

(char,’a) StringCvt.reader ->
({pos: ’a, len: int} option MatchTree.match_tree,’a)

StringCvt.reader

(* Attempt to match the stream at the current position with one
of the external representations of regular expressions and
trigger the corresponding action.

*)
val match: (string *

({pos:’a, len:int} option MatchTree.match_tree -> ’b)
) list
-> (char,’a) StringCvt.reader
-> (’b, ’a) StringCvt.reader

end

Your program will first compile a regular expression using either the
compile or compileString functions. You can then use one of find ,
prefix or match to match a string with the regular expression. The result
of matching is a match tree. Here is the (partial) signature which defines the
tree.

signature MATCH_TREE =
sig

(* A match tree is used to represent the results of a nested
grouping of regular expressions.

*)
datatype ’a match_tree = Match of ’a * ’a match_tree list

(* Return the root (outermost) match in the tree. *)
val root : ’a match_tree -> ’a
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(* return the nth match in the tree; matches are labeled in
pre-order starting at 0. Raises Subscript

*)
val nth : (’a match_tree * int) -> ’a

...

Each node in the tree corresponds to a regular expression in parentheses (a
group) except the root of the tree which corresponds to the whole regular
expression. Since groups can be nested you get a tree of matches. Each
match tree node stores an optional pair of position and length (see the
match_tree type in the REGEXPsignature above). If the group was matched
with part of the original string then this pair will show where. The pair is
NONEif the group was not matched with anything e.g. if it’s for an
alternative that was never followed.

The matching functions are designed to work with the StringCvt scanning
infrastructure (see the section called Text Scanning in Chapter 3). So for
example the expression (find regexp) is a function that maps a character
stream to a stream of match trees. To match a string you will need to
combine it with the StringCvt.scanString function.

The match function takes a list of pairs of a regular expression (which will
be compiled on the fly) and a function to post-process the match tree. It
returns the post-processed result (of the type ’b in the REGEXPsignature).

All of this is very flexible but a bit verbose to use. The following sections will
show some examples.

Basic Matching
This test will match the regular expression "the.(quick|slow).brown" against
the string "the quick brown fox". First I build some matchers to try out.

structure BT = RegExpFn(structure P=AwkSyntax
structure E=BackTrackEngine)

structure DFA = RegExpFn(structure P=AwkSyntax
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structure E=BackTrackEngine)

Here is the function to run the matching using the BT matcher.

fun demo1BT msg =
let

val regexp = BT.compileString "the.(quick|slow).brown"
in

case StringCvt.scanString (BT.find regexp) msg of
NONE => print "demo1 match failed\n"

| SOME tree => show_matches msg tree
end

The scanString function is used to apply the matcher to the message. The
show_matches function reports the parts of the string that were matched
by each group in the regular expression. Here it is.

(* Show the matches n=0, ... *)
and show_matches msg tree =
let

val last = MatchTree.num tree

fun find n =
(

case MatchTree.nth(tree, n) of
NONE => "<Unmatched>"

| SOME {pos, len} => String.substring(msg, pos, len)
)

and loop n =
(

print(concat[Int.toString n, " => ", find n, "\n"]);
if n >= last then () else loop(n+1)

)
in

loop 0
end

Groups are numbered by counting left-parentheses left to right from 1.
Group 0 represents the entire regular expression. The nth function returns
the match tree node for the nth group. The show_matches function just
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iterates for increasing values of n. The last group is given by the num
function. The output of this test is

Demo 1 using BT
0 => the quick brown
1 => quick

Matching with a Back-End
The front-end translates a regular expression to an intermediate form which
is represented by the syntax datatype. This is defined in the following
signature from FrontEnd/syntax-sig.sml . The RegExpSyntax structure
implements this signature.

signature REGEXP_SYNTAX =
sig

exception CannotParse
exception CannotCompile

structure CharSet : ORD_SET where type Key.ord_key = char

datatype syntax =
Group of syntax

| Alt of syntax list
| Concat of syntax list
| Interval of (syntax * int * int option)
| Option of syntax (* == Interval(re, 0, SOME 1) *)
| Star of syntax (* == Interval(re, 0, NONE) *)
| Plus of syntax (* == Interval(re, 1, NONE) *)
| MatchSet of CharSet.set
| NonmatchSet of CharSet.set
| Char of char
| Begin (* Matches beginning of stream *)
| End (* Matches end of stream *)

val addRange : CharSet.set * char * char -> CharSet.set
val allChars : CharSet.set

end

You can build regular expressions using this datatype. This intermediate
form is further translated by the back-end to its own internal
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representation, for example the DFA for the DFA back-end. Each back-end
has its own compile function to do this.

The following code shows the quick brown fox example from the previous
section done this way.

local
structure RE = RegExpSyntax
structure CS = RE.CharSet

val dot = RE.NonmatchSet(CS.singleton #"\n")

fun cvt_str s = RE.Concat(map RE.Char (explode s))
in

fun demo2BT msg =
let

(* "the.(quick|slow).brown" *)
val regexp = BackTrackEngine.compile(RE.Concat[

cvt_str "the",
dot,
RE.Group(RE.Alt[

cvt_str "quick",
cvt_str "slow"]),

dot,
cvt_str "brown"
])

in
case StringCvt.scanString (BT.find regexp) msg of

NONE => print "demo2 match failed\n"
| SOME tree => show_matches msg tree

end
end

The dot in a regular expression usually means any character excluding the
new-line character. I can achieve this with NonmatchSet which means all
characters but the one in the set. Look at the ORD_SETsignature for the
available operations on character sets.

The cvt_str function converts a string to a sequence of character matchers.
The syntax value is not the simplest since the cvt_str calls produce
redundant nesting of Concats. If you were going to be doing a lot of this sort
of thing it would be useful to write a normalising function that flattened
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nested Concats. The Group constructor signals a group of characters to be
put into the match tree. The result is the same as before.

Demo 2 using BT
0 => the quick brown
1 => quick

Other Utilities
I will only briefly mention the remaining sections of the SML/NJ utilities
library.

Parsing HTML
The HTMLdirectory contains a parser for HTML. It follows version 3.2 of
HTML fairly strictly. It won’t cope with non-standard tags and attributes the
way a browser would. In a program it might be useful for reading and
displaying help files or on-line documentation. Such files could be trusted to
use a restricted safe form of HTML. There is a test-parser.sml source file
which demonstrates using the parser. For debugging, there is a
pretty-printer for the parsed HTML.

INet
The INet directory contains some utility functions for handling sockets.
These utilities aren’t written for a CML environment so I didn’t use them in
the web server.

Pretty-Printing

170



Chapter 5. The Utility Libraries

Pretty-printing means formatting a data structure such as a tree ready to
print to a file. The formatting can involve indenting to show structure and
styles such as a bold font or colour where possible. A pretty-printer is
important in a compiler to format an expression into an error message. You
might find similar uses for it in your applications.

The pretty-printer is in the PPsource directory. The formatter is generic over
different kinds of "output device". For example there is an output device for
producing HTML. The tests directory contains some example code.

Reactive
The Reactive directory contains a fragment of a system for implementing a
reactive programming language. The README says it all.

Unix
The Unix directory contains some minor functions for manipulating Unix
environment variable lists and directory path lists. The environment
variable functions could be useful when building the environment for a child
process.
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Chapter 6. Concurrency
This chapter introduces the concurrency mechanisms of the Concurrent ML
library, or CML for short(see [CML]). The concurrency model is based around
a collection of threads which communicate by sending messages (rather than
sharing access to variables). CML does not use the "kernel" threads of the
operating system. Instead its implementation is based on coroutines.
However a timer mechanism triggers pre-emptive scheduling of the threads.
The coroutine mechanism is in turn based on the idea of continuations.

The CML library adds a collection of modules containing concurrent
operations and also replaces some of the Basis and Utility library modules
with thread-safe versions. There is some reference documentation provided
with the library in HTML and Postscript formats. The text book on CML is
[Reppy]. This chapter will cover the concepts in enough detail to carry on
with the project in part II.

There is a bug in the version of CML distributed with SML/NJ 110.0.7. You
will need to get a copy from the CML home page dated later than 14 Jan
2001 to run all of these examples successfully. The Appendix C explains how
to do this.

Continuations
In the section called Tail Recursion as Iteration in Chapter 2 and the section
called Tail Recursion for Finite State Machines in Chapter 2 we saw how a
function call can be equivalent to and as light-weight as the goto of a
language like C. Turning our view-point around we can represent any
transfer of control as a call to some function. In the simple flow-chart of
Figure 6-1(a) there are implicit transfers of control from one block to the
next. Data values are also passed (implicitly), for example the value of x is
passed to the addition in the second block.
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Figure 6-1. A Simple Flow Chart

The transfer from the first to the second block can be modeled as a function
call by considering everything that happens from the second block onwards
as being the computation of a function. This function will be passed the
value of x as an argument. The function is said to continue the execution of
the program after the first block. This continuation function is shown in
Figure 6-1(b) as the function C. The assignment to x can be reduced to a call
to C passing the value 3 as the argument x of the continuation. The transfers
of control inside the function C can be further decomposed into calls to
continuation functions.

Since this function C represents all the rest of the execution of the program
it never returns. So any call to it must be a tail call. These are the essential
characteristics of a continuation: a tail call is made to a continuation to
continue the rest of the execution of the program, passing as arguments all
the values that will be used by the rest of the program. A continuation
function is often passed in as an argument to a function to give greater
flexibility in the choice of direction for the program.

Continuations were introduced in the study of the semantics of
programming languages. A notation called Denotational Semantics was
developed in the late 1960s and 1970s by Scott and Strachey among others
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to describe formally the semantics of programming languages. See [Allison]
for an introduction. Denotational semantics was based on lambda calculus
which gave it a functional style. This created the problem of how to
represent the control-flow of an imperative language. Continuations were
invented to model control-flow in lambda calculus. They are a primitive
notion that can be used to model any flow of control, including long-distance
transfers such as raising exceptions. For example an if statement in C has a
then and an else part and control is transferred to one of them. This can be
modeled by having two continuations. The first contains the execution of the
then part followed by the rest of the program. The second contains the
execution of the else part followed by the rest of the program. The predicate
of the if statement chooses which continuation to call.

At any point in the execution of the program we can define a current
continuation. This is a hypothetical continuation function that represents
the rest of the execution after that point in the program. If we could capture
the current continuation as a real function we would obtain a snapshot of
the execution of the program at that point. Some programming languages
provide this feature, called call with current continuation or call/cc .
Scheme for example provides this. So does SML/NJ. The call/cc operation
captures the current continuation, from the point after the call/cc , and
passes it as a function value to a function that you provide. Your function
can do anything with the continuation including storing it for later use. If
the program later calls the continuation it results in a resumption of
execution from after the call/cc .

When you continue a program by calling a continuation function you will
probably be continuing the execution of a number of called functions which
have piled up on the call stack. The continued execution will include
returning from called functions to functions higher up the call stack. So the
contents of the call stack are an essential part of the snapshot represented
by the continuation. But as an extra complication you can call a continuation
more than once, just as you can call any function more than once. This
results in the mind-bending possibility of rerunning parts of your program,
possibly restarting in arbitrary locations in the middle of functions. You

175



Chapter 6. Concurrency

could call a function once but it returns twice. So when call/cc makes its
snapshot it, at least in principle, needs to save a copy of the call stack. This
can be expensive. Some implementations of Scheme do exactly this.

The implementation of call/cc in SML/NJ is much simpler. The language
is implemented using continuations. The compiler identifies all
continuations in the program before generating machine code for each
continuation. See [Appel2] for the details. The call stack is maintained in the
heap so that it does not need to be destroyed as functions return, as happens
in the C language. So it costs nothing to save the call stack when a call/cc
is done, since it is already in the heap. It is only necessary to retain a pointer
to the top of the call stack so that the garbage collector does not take it.

With call/cc being almost zero cost in SML/NJ you can use it frequently
for all sorts of tricks. But unless you are careful you will get code that is as
spaghetti in nature as the worst Fortran or assembly language program. I
won’t use call/cc directly in this book. Instead its use will be stereotyped
by CML. CML uses call/cc to implement switching execution between
threads. The stereotyped pattern is the coroutine.

Coroutines
You are already familiar with the idea of a subroutine. Control is transferred
to some separate section of code which executes to completion. Then control
is returned back from whence it came. The separate section of code is
subordinate to the calling code, hence the name subroutine. Coroutines
redefine the relationship between two sections of code to make them more
like peers. Figure 6-2(a) shows a loop with two coroutines passing control
back and forth between them.

176



Chapter 6. Concurrency

Figure 6-2. Two Coroutines

Coroutine 1 consists of two blocks of code, C1a and C1b, similarly for
coroutine 2. Coroutine 1 transfers control after C1a to coroutine 2 which in
this case picks up execution at the beginning of C2b and continues with C2a
and then transfers control back to coroutine 1. When control is transferred to
a coroutine the execution always continues at the point the coroutine was
last at (except the first time it is called in which case it starts at the top of
the coroutine). You might ask why not simply include the blocks inline as in
Figure 6-2(b). The answer is the same as for subroutines, a coroutine might
be called from multiple places or, even if called from only one place, the
resulting code can be clearer.

An example of the use of coroutines is to implement the idea of generators for
loops. Here is an example (in Perl) of iterating over a list of names.

foreach my $k ("tom", "dick", "harry")
{

print "not for any $k\n";
}
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The list could instead be produced from a function call. We can talk about a
function that generates a list and a loop that iterates over or consumes the
list. This Perl example consumes one value from the list for each iteration. If
we had a function generating the list it would construct the complete list in
memory before the loop started. This could consume a lot of memory. A more
efficient way would be to have the generating function and the consuming
loop run concurrently. The generator generates a value in the list and
returns it to the consumer. The consumer calls back to the generator for the
next value. The generator and consumer are running as coroutines.

Some languages have included generators directly as a language feature.
Here is an example from the CLU language [CLU].

start_up = proc()
outstream:stream := primary_output()
for s:string in get_hello_world() do

stream$putl(outstream,s)
end

end

get_hello_world = iter() yields(string)
while (true) do

yield ("Hello, World!")
end

end

In CLU generators are a special type of procedure called an iterator or iter .
The main function start_up() has a for loop that iterates the string
variable s over the stream of strings produced by the generator
get_hello_world() . The generator produces an infinite stream of "hello
world" messages. The yield statement transfers control back to the calling
loop. When the calling loop completes an iteration it will transfer control
back to get_hello_world() after the yield statement and the while loop
will go around again.

Coroutines provide a more general mechanism that you can use to
implement patterns like this.

In the section called Pure FP and I/O in Chapter 1 I talked about lazy
streams. They are another example of the producer/consumer relationship.
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You could implement lazy streams as coroutines. The compiler for a lazy
functional language could be said to automatically convert functions to
coroutines when there is a producer/consumer relationship.

Finally it is only a small step from coroutines to concurrent tasks. A set of
tasks without pre-emptive scheduling is equivalent to a set of coroutines.
Each task explicitly transfers control to another through a yield operation. If
you add a timer to force the yield periodically then you have a proper
pre-emptively scheduled concurrent system.

CML uses the call/cc operation to save the state of a running thread as a
continuation. The continuations of the threads that aren’t running are
stored in a queue. When the current thread yields or is pre-empted a
scheduler selects the next continuation from the queue and calls it to
continue the thread. A timer is used to trigger a schedule of the current
thread or a thread can yield when it performs some concurrent operation
such as stopping to wait for a message. CML provides modified Basis library
modules so that I/O can be safely preempted.

We can turn our view-point around now and use concurrent threads as a way
to implement coroutines, lazy streams and any other kind of concurrent
producer/consumer relationship. For example, a generator for a loop can be
implemented as a thread that sends the list values as messages to a
consuming thread. The generator will block until the consumer takes the
next message.

The CML Model
CML provides the following concurrent features:

• threads;

• channels for passing messages;

179



Chapter 6. Concurrency

• events to signal when a message has arrived, I/O has completed or a
timeout has occurred;

• synchronous variables;

• mailboxes which are buffered asynchronous channels.

CML Threads
Figure 6-3 shows the typical structure of a thread in a CML program. The
thread may receive messages from one or more input channels on the left. It
may write messages to one or more output channels on the right. The thread
may also do conventional file I/O. The body of the thread is implemented as a
function. Typically this will contain a loop that runs a state machine. The
function maps the pair (current state, inputs) to (next state, outputs) and
then it loops. The function contains an environment which is the set of
variables captured by it from surrounding scopes or passed in as arguments.
These will typically supply the channels, files etc. that the thread will
communicate on. The function can be written to be pure with all of its state
being passed through the arguments.

Figure 6-3. A CML Thread

Threads can be created dynamically and are light-weight enough that you
can structure your program with large numbers of threads.
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Messages on a channel are normal values and can be of any type. However
each channel has a single type. If you need to pass values of different types
then you will need to either combine them into a datatype or have separate
channels. Functions dealing with channels can be polymorphic over the type
of the channel.

The CML model has some parallels with the object-oriented model.
Originally classes and objects were introduced in the Simula language
[Simula] which was designed for simulating (discrete event-based)
real-world systems. Objects represented real-world entities. Today it is
common to explain object-oriented concepts by showing how to model the
real-world entities as objects and describe the differences, commonalities and
relationships between objects using classes. Each object interacts with the
other objects by sending and receiving messages. An object contains some
private state which may be updated as a result of the messages it receives.

But real-world systems are naturally concurrent. There have been several
attempts at designing concurrent object-oriented languages but this is
difficult in the imperative programming paradigm because of the necessity
to protect the imperative state from concurrent update and to manage the
correct ordering of update operations when parts of the system are operating
asynchronously. The root of the problem is that state in imperative programs
is finely divided into imperative variables and spread throughout the
program creating a great many points to pay attention to.

The way I use CML is to think of each thread as representing a concurrent
object in the system. The objects will be coarse-grained representing major
divisions of the system architecture rather than the fine-grained "everything
is an object" idea that some languages push. The body of the object is usually
implemented as a pure function with all of the state of the object segregated
into a single state value that is passed around outside of the function. The
result is a hybrid paradigm that is imperative with objects and state at the
top level and is functional at the level of the implementation of the objects.

In a conventional language like Java or C++ in a multi-threaded program a
piece of code may be executed by more than one thread at a time. This
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creates the need for identifying critical sections which must be executed by
at most one thread at a time. You could get into similar difficulties in CML if
you try to have threads updating shared reference variables. Instead,
following a concurrent object paradigm, you would wrap each piece of state
into an object which controls access to the state. The object updates the state
in response to messages from other objects. It can then be single-threaded
internally with each object having its own thread. Since CML threads are
light-weight it is not a problem to have large numbers of threads.

The model I’m describing here appears more explicitly in other concurrent
languages as a coordination sub-language. These languages have two parts,
a sequential language for manipulating the data and a coordination
language to control the interaction between the concurrent objects.

An example of a coordination language is Linda[Linda]. Linda is
independent of the data language and can be used with a variety of
languages, even C. Another interesting language is COOL, the Crisp object
coordination language[CoolCrisp]. This coordinates concurrent objects called
actors. The actors typically implement finite-state machines. They
communicate via asynchronous messages (rather than the synchronous
messages of CML). Getting closer to functional languages, there is the new
research language called Hume[Hume]. This has a restricted purely
functional language in the Haskell mold for the data language. All
imperative state is handled at the level of the coordination language. Search
for "coordination language" at Google for more examples.

CML Channels
A channel is a rendezvous point between two threads that allows them to
pass a value. The value passing is synchronous. The sender of the value
waits for the receiver and the receiver waits for the sender.

Each channel you create has a fixed type. The type of a channel is defined in
the CML structure named CML1.
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type ’a chan

The type variable ’a is the place holder for the type of values passed through
the channel. If you want to pass more than one type of value then you will
need to either combine them in a datatype or use more than one channel.

Channels are bidirectional. Any pair of sending thread and receiving thread
can use a channel. The following functions defined in the CMLstructure deal
with channels. (See the CMLstructure for more channel handling functions.)

val channel : unit -> ’a chan
val send : (’a chan * ’a) -> unit
val recv : ’a chan -> ’a
val sendEvt : (’a chan * ’a) -> unit event
val recvEvt : ’a chan -> ’a event

The channel function creates a new channel. The send and recv functions
do just what the name says. The sendEvt and recvEvt functions return
events (described in the next section). The event functions allow a thread to
choose between several send or receive operations.

CML Events
An event represents some activity that will be completed at a later time. An
event is treated like any other value so it can be passed around and stored.
An event is said to be enabled when its activity is completed. For example an
event might represent the reception of a message on a channel or the
completion of some I/O activity.

A program can choose to wait for an event to be completed. The act of
waiting is called synchronising and is independent of launching the activity
that the event represents. The program can choose one from a collection of
events to synchronise on. This is similar to the traditional select or poll
system call of Unix but it is more general. An event can represent any
concurrent activity such as the completion of a thread.

The type of an event is defined in the CMLstructure.
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type ’a event

An event has an associated data value that is returned when the program
synchronises on the event. The type variable ’a is a place-holder for the
value’s type. The following functions defined in the CMLstructure handle
collections of events. (See the CMLstructure for more event handling
functions.)

val wrap : (’a event * (’a -> ’b)) -> ’b event
val choose : ’a event list -> ’a event
val sync : ’a event -> ’a
val select : ’a event list -> ’a
val guard : (unit -> ’a event) -> ’a event
val timeOutEvt : Time.time -> unit event
val atTimeEvt : Time.time -> unit event

These functions build up a representation of a network of events. The wrap
function associates a function with an event which will process the event’s
value after the event is synchronised on. The choose function represents
the choice of one event from the list of events. The choice is not actually
made until a synchronisation is attempted. Then the first enabled event
from the list is chosen or if several are enabled then one of them is chosen
non-deterministically. A synchronisation is performed on the chosen event
returning the event’s value.

The following code illustrates the interaction of wrap and choose . The bev
values are base events such as the reception of a message. The w values are
wrapping functions.

val ev = choose [
wrap (bev1, w1),
wrap (choose [

wrap (bev2, w2),
wrap (bev3, w3)
], w4)

]

Figure 6-4 shows the network of events that results. The nodes labelled with
"| " represent choices. When a synchronisation is attempted on the event ev
then the program will wait for one of the events bev1 , bev2 or bev3 to be
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enabled. If bev2 is the first to be enabled then its returned value will be run
through the w2 and w4 functions in that order to produce the value returned
by the ev event.

Figure 6-4. A Network of Events

The sync function waits for an event. The select function is equivalent to
choose and then a sync but is more efficient.

The guard function associates a function with an event to be run at the time
of synchronisation. The function will typically be used to make preparations
for the event. This is useful in a choice of events to have preparations specific
to each event.

The timeOutEvt function produces an event that becomes enabled after
some time interval has passed. The atTimeEvt function is similar but it
becomes enabled at a specified point in time.

Synchronous Variables
A synchronous variable is a buffer with a capacity for one value that
provides for asynchronous communication between threads. A writer can put
a value into a variable without waiting for a reader. There are two kinds, an
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I-variable is write-once, an M-variable can be written to more than once. The
writer cannot overwrite the value in an M-variable. It must wait for it to be
emptied by the reader before another value can be written. Symmetrically a
reader must wait for a writer to put a value into a variable. CML events are
available for waiting on a variable.

I-variables are useful when you want to pass only one message between two
threads. For example when replying from a remote procedure call (RPC).
They are more efficient than channels for this. For a more complex example,
the CML library provides an implementation of multicasting using
I-variables.

M-variables are a more general-purpose primitive for building up
synchronisation operations. I’ve only used them to implement a mutex to
protect a critical section. The value in the M-variable can be treated as a
baton which gives access to the critical section. A thread takes the baton out
of the M-variable, performs the critical code and puts the baton back into the
M-variable. If another thread tries to take the baton at the same time it will
block because the M-variable is empty.

Synchronous variables are implemented in the SyncVar structure of CML.
See the CML documentation for more details.

Mailboxes
A mailbox provides a buffer with unlimited capacity for asynchronous
communication between threads. They are implemented in the Mailbox
structure of CML. Since the capacity is unlimited a program using them
should implement some sort of flow control.
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A Counter Object
This section shows a simple example of two threads sending a message. One
thread will implement a counter object that increments its value in response
to commands. For the body of the object I use this counter function.

datatype Message =
MsgIsIncr of int

| MsgIsStop

fun counter in_chan () =
let

fun loop count =
(

case CML.recv in_chan of
MsgIsIncr n => loop (count + n)

| MsgIsStop =>
(

print(concat["Count is ", Int.toString count, "\n"])
)

)
in

loop 0
end

The possible messages are defined by the Message datatype. The counter
function contains a loop implementing a state machine. The state variable is
the count with an initial value of 0. When the counter is stopped it just
prints its count. The channel is passed in via the in_chan argument when
the function is started.

The client of the object is a thread running this driver function which sends
some messages and stops.

fun driver out_chan () =
let
in

CML.send(out_chan, MsgIsIncr 3);
CML.send(out_chan, MsgIsIncr ~1);
CML.send(out_chan, MsgIsStop)

end
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The main thread of the program is this function called run .

fun run() =
let

val chan: Message CML.chan = CML.channel()
val d = CML.spawn (driver chan)
val c = CML.spawn (counter chan)

in
CML.sync(CML.joinEvt d);
CML.sync(CML.joinEvt c);
()

end

I first create a channel which passes Message values. I’ve used an explicit
type constraint to make this clear but type inference would have figured it
out if I didn’t. Then I spawn two threads for the counter and its driver. The
channel is passed to each thread via the curried arguments in_chan or
out_chan . (Because of the () argument in the function definitions, the
expression (driver chan) is a function taking unit as its argument,
which matches the requirement of the CML.spawn function.) Then I wait for
each thread to terminate. The joinEvt function returns an event that is
enabled when the thread terminates. The call to sync performs the wait.

A thread terminates when its function returns or it explicitly calls
CML.exit . Thread functions always return unit and so does the join event
so there is no mechanism for a thread to return a value when it terminates
unless it sends one through a channel (or does something ugly like write to a
global variable).

I don’t actually need to do the wait in the run function. If I don’t then the
function will return and its thread will terminate but the spawned threads
will continue. The program won’t terminate until all of its threads have
terminated.

Here is the main function. To start the main thread I need to explicitly call
RunCML.doit which is a (currently) undocumented function. The second
argument is an optional time interval for scheduling which defaults to 20
milliseconds.

fun main(arg0, argv) =
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let
in

RunCML.doit(run, NONE);
OS.Process.success

end

The CM file for this program is as follows. It picks up the CML package
containing the CML, SyncVar , Mailbox , and modified I/O structures.

group is
counter.sml
/src/smlnj/current/lib/cml.cm
/src/smlnj/current/lib/cml-lib.cm

You can terminate the program early by calling RunCML.shutdown with an
exit status. This will cause the RunCML.doit function to return early with
the status value. For example

RunCML.shutdown OS.Process.failure

In this case you would call RunCML.shutdown with a success status for
normal exit. For example

fun run() =
let

...
in

...
RunCML.shutdown OS.Process.success

end

fun main(arg0, argv) =
(

RunCML.doit(run, NONE)
)
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Some Tips on Using CML
It is important that you have a direct use of the TextIO module in your
program. This ensures that the CML version of TextIO is used which is
properly thread-safe. Defining a function like the following somewhere will
do the trick.

fun toErr s = TextIO.output(TextIO.stdErr, s)

To use any of the SML/NJ library modules use cml-lib.cm in place of
smlnj-lib.cm in your CM files. This will ensure that CML-compatible
versions are used. This library also contains the Multicast and TraceCML
structures.

You can export your program to a heap using SMLofNJ.exportFn . CML is
not started until the call to RunCML.doit in the main function. You can do
no CML operations before it is started except that you can create some data
structures such as channels, synchronous variables and mailboxes.

Getting the Counter’s Value
The next goal is to be able to return the count from a counter object. Since
the object can only respond to one message at a time it will be enough to
have one channel reserved for replies. The main design goal is ensuring that
the channels are used correctly so that the clients of the object can’t cause
deadlocks.

Remember that channels are synchronous. The client will block while
waiting for the counter to receive a get request. When the counter has
received it it will send the reply on the reply channel and the client will be
blocked waiting for the reply. For correctness there must be a 1 to 1 match
between request and reply and the thread that accepts the reply must be the
one that sent the request.
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To ensure correctness the bits and pieces of the object must be hidden within
a module. Here is the signature of a structure that describes the interface to
a counter object.

signature COUNTER =
sig

type Counter

val new: int -> Counter
val incr: Counter -> int -> unit
val get: Counter -> int

end

To a client, the counter object is represented by a proxy of type Counter .
The proxy encapsulates the sending and receiving performed by a client.
New objects are created with the new function which takes an initial value
for the count. The incr and get functions operate on the counter.

Here are the types that implement the counter.

structure Counter: COUNTER =
struct

datatype Request =
ReqIsIncr of int

| ReqIsGet

and Reply =
ReplyIsCount of int

and Counter = Counter of {
req_chan: Request CML.chan,
rpl_chan: Reply CML.chan
}

The Request and Reply types define the messages passed between the
client and counter. The counter proxy is a record containing the two channels
that communicate with the counter.

There is no need to retain any other handle to the counter, such as its
thread. As long as there are channels that can communicate with a thread it
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will be considered to be live by the garbage collector. If a value of type
Counter becomes garbage then the thread that it communicates with will
also become garbage and the thread will be collected and terminated. (If I
want a thread to stay alive without channels then I would have to retain its
thread ID somewhere).

Here is the implementation of the counter in the new function.

fun new init =
let

val req_chan = CML.channel()
val rpl_chan = CML.channel()

fun counter() =
let

fun loop count =
(

case CML.recv req_chan of
ReqIsIncr n => loop (count + n)

| ReqIsGet =>
(

CML.send(rpl_chan, ReplyIsCount count);
loop count

)
)

in
loop init

end

val thread = CML.spawn counter
in

Counter
{

req_chan = req_chan,
rpl_chan = rpl_chan

}
end

To create a counter I create the two channels and spawn a thread to run the
counter function. The counter function gets its channels and initial value
from its surrounding scope. I return a value of type Counter to the client.

Here are the interface functions.
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fun incr (Counter {req_chan, ...}) n =
(

CML.send(req_chan, ReqIsIncr n)
)

fun get (Counter {req_chan, rpl_chan}) =
(

CML.send(req_chan, ReqIsGet);

case CML.recv rpl_chan of
ReplyIsCount n => n

)

The incr function just sends a message to the server to increment its value.
There is no need for a reply. The get function stops to wait for a reply.

Figure 6-5 shows an interaction between the client and object for the get
function. The counter has performed a recv and is blocked waiting for the
client. When the client sends the Get message the counter runs and sends
back the reply. Then it loops and blocks on a recv again. Meanwhile the get
function has blocked waiting for the reply. When it gets it it returns the
value to the caller.

Figure 6-5. Getting the Counter’s Value
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The get function is guaranteed to be atomic because of the synchronous
nature of the send operation. If another thread attempts to call incr or get
before a previous reply has been received then it will block at the send
operation. The object will not receive the next message until the reply has
been accepted by the client.

Getting the Value through an Event
In the previous section I have the client blocking while waiting for a reply
from an interaction with the counter object. This does not mesh with the
style of CML which is to separate the construction of an interaction from
waiting for it to complete. What I need is to have a Get request return an
event which the client can wait on. Then the client has the option of, for
example, timing-out the reply or waiting for replies from multiple sources.

Events will typically be used with the CML select or choose function to
decide among several interactions. When an event is chosen the program
becomes commited to that choice. The event is said to represent the commit
point in the interaction.

For the simple request-reply interaction of the counter object there are two
places I can put the commit point. The simplest and most direct is to put it
in the request phase of the interaction. This means that the event will be
enabled when the counter is ready to accept a request. Once the event is
chosen and synchronised then the program is committed to waiting for the
reply. If the client were to use a time-out with this kind of event it would be
timing-out waiting for the counter to become ready to accept the request,
which is probably not what’s intended.

Alternatively the commit point can be put in the reply phase. The event
becomes enabled when the reply is received. This would allow the client to
wait for a reply or for a time-out.

For the counter object, committing in the request phase will be fine since the
object will reply quickly. The following example shows the counter object
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with an event that commits in the request. I have added a getEvt function
to the counter’s interface. This returns an event that will deliver the
counter’s value when synchronised.

signature COUNTER =
sig

type Counter

val new: int -> Counter
val incr: Counter -> int -> unit
val get: Counter -> int
val getEvt: Counter -> int CML.event

end

Here is the implementation of the Get interaction.

fun getEvt (Counter {req_chan, rpl_chan}) =
let

fun recv() =
(

case CML.recv rpl_chan of
ReplyIsCount n => n

)
in

CML.wrap(CML.sendEvt(req_chan, ReqIsGet), recv)
end

fun get counter = CML.sync(getEvt counter)

In the getEvt function I use sendEvt to get an event that is enabled when
the request has been passed to the counter. This event is wrapped with the
recv function which will wait for the reply and return it. The original get
function becomes a simple synchronisation on the Get event.

Because of the synchronous nature of channel communication the ReqIsGet
message won’t pass to the counter until the client has synchronised on the
send event and the counter is waiting to receive. When the message is
passed the client immediately goes on to wait for the reply and the counter
immediately sends the reply so there is no further delay.
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Getting the Value with a Time-Out
The next example shows the alternative implementation with the commit
point in the reply phase. This could be used by the client with a 1 second
time-out with code like this.

val time_out: int -> int CML.event
...
select [Counter.getEvt cnt, time_out 1]

As soon as the select starts waiting for these events I want the request to
be sent to the counter. If the reply is not ready before the time-out event is
enabled then the reply must be discarded. Note that for type correctness the
time-out event must be able to deliver an integer the same as the counter
does.

The first version of this example uses a channel to carry the reply. When the
counter attempts to reply it must not become blocked while waiting for the
client to accept the reply, otherwise we will lose concurrency in the program.
Since sending to a channel can block, a separate thread must be spawned to
deliver the reply while the counter goes on to handle the next request. So we
can have more than one outstanding reply to different clients. There will
have to be a different reply channel for each client.

Similarly the client should not be blocked waiting for the counter to receive
the request as this may delay the start of the time-out or prevent delivery of
the time-out event. So the request will be sent from a separate thread as
well.

Here are the message types.

structure Counter: COUNTER =
struct

datatype Request =
ReqIsIncr of int

| ReqIsGet of Reply CML.chan

and Reply =
ReplyIsCount of int
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and Counter = Counter of {
req_chan: Request CML.chan
}

The Counter record no longer holds a reply channel. Instead one is passed
along with the ReqIsGet message. Here is the new function with the
updated counter implementation. I’ve added a time delay into the reply for
testing. If you change the delay to 2 seconds the client, shown below, will
time-out.

fun new init =
let

val req_chan = CML.channel()

fun counter() =
let

fun loop count =
(

case CML.recv req_chan of
ReqIsIncr n => loop (count + n)

| ReqIsGet rpl_chan =>
let

fun reply() =
(

delay 0;
CML.send(rpl_chan, ReplyIsCount count)

)
in

CML.spawn reply;
loop count

end
)

in
loop init

end

val thread = CML.spawn counter
in

Counter
{

req_chan = req_chan
}

end
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Here is the time delay function. Don’t use the Posix.Process.sleep
function or anything similar as it will pause the entire program, not just one
thread. See the section called More on Time-Outs for more details.

fun delay n = CML.sync (CML.timeOutEvt (Time.fromSeconds n))

Here is the updated implementation of the getEvt function.

fun getEvt (Counter {req_chan, ...}) =
let

fun send() =
let

val rpl_chan = CML.channel()

fun recv (ReplyIsCount n) = n
fun sender() = CML.send(req_chan, ReqIsGet rpl_chan)

in
CML.spawn sender;
CML.wrap(CML.recvEvt rpl_chan, recv)

end
in

CML.guard send
end

This returns an event that is constructed by the recvEvt function and is
wrapped in both the send and recv functions. The guard delays the
sending of the message until an attempt is made to synchronise on the event
using for example select as shown above. Then a thread is spawned to
send the Get request asynchronously and an event to represent the reception
of the reply is constructed. This event is wrapped with the recv function to
unpack the integer count in the reply. It is this receive event that is returned
and waited on by the client along-side the time-out.

Finally to demonstrate the time-out I’ve changed the driver function.

fun run() =
let

val obj = Counter.new 0

fun time_out t = CML.wrap(
CML.timeOutEvt(Time.fromSeconds t),
fn () => ~1)
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in
Counter.incr obj 3;
Counter.incr obj ~1;

let
val c = CML.select [Counter.getEvt obj, time_out 1]

in
print(concat["The counter’s value is ",

Int.toString c, "\n"])
end

end

Here I’ve added a time_out function that delivers a count of -1 if the
time-out expires.

It might seem that there is a risk that one of the spawned threads will get
stuck forever if either the client or the counter fails to complete the
interaction. But the garbage collector can determine if a channel operation
can never complete because no other threads reference the channel. So all of
these spawned threads will be cleaned up properly even if there is a time-out.

Figure 6-6 shows the client getting the counter’s value with and without a
time-out. When there is no time-out, the select will choose to receive the
reply. When there is a time-out the select will receive a time-out message
that is triggered by the CML.timeOutEvt function. The reply thread
running the reply function will block indefinitely. When the garbage collector
collects the event from getEvt all references to the reply channel outside of
the reply thread will disappear and the reply thread will be collected too.
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Figure 6-6. Getting the Value with a Time-Out

Here is a more stream-lined version using an I-variable (see the section
called Synchronous Variables) to return the reply. Writing into an I-variable
never blocks. If there is already a value in the variable then that is an error
which raises an exception. But the counter will only reply once. So the
counter doesn’t need to protect itself against blocking by spawning a thread
for the reply.

structure Counter: COUNTER =
struct

datatype Request =
ReqIsIncr of int

| ReqIsGet of int SyncVar.ivar

and Counter = Counter of {
req_chan: Request CML.chan
}

... omitted material ...

fun counter() =
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let
fun loop count =
(

case CML.recv req_chan of
ReqIsIncr n => loop (count + n)

| ReqIsGet rpl_var =>
(

(* delay 2; *)
SyncVar.iPut(rpl_var, count);
loop count

)
)

in
loop init

end
... omitted material ...

fun getEvt (Counter {req_chan, ...}) =
let

fun send() =
let

val rpl_var = SyncVar.iVar()

fun sender() = CML.send(req_chan, ReqIsGet rpl_var)
in

CML.spawn sender;
SyncVar.iGetEvt rpl_var

end
in

CML.guard send
end

More on Time-Outs
There are two kinds of time-out events. The timeOutEvt function returns
an event that will delay each time that it is synchronised on. The
atTimeEvt function returns an event that becomes enabled at some time in
the future and then is always enabled thereafter.

201



Chapter 6. Concurrency

These differences are illustrated by the timeouts program. Depending on
the command line argument it will exercise either of the abs or delta
functions.

Here is the delta function.

fun delta() =
let

val tmevt = CML.timeOutEvt (Time.fromSeconds 5)
in

print "Waiting for the timeout\n";
CML.sync tmevt;

print "Delay\n";
CML.sync (CML.timeOutEvt (Time.fromSeconds 1));

print "Waiting again for the timeout\n";
CML.sync tmevt;

print "Done\n"
end

When you run the program with the delta command-line argument you will
see that the "Waiting for the timeout" message is followed by a 5 second
delay each time.

Here is the abs function.

fun abs() =
let

val when = Time.+(Time.now(), Time.fromSeconds 5)
val tmevt = CML.atTimeEvt when

in
print "Waiting for the timeout\n";
CML.sync tmevt;

print "Delay\n";
CML.sync (CML.timeOutEvt (Time.fromSeconds 2));

print "Waiting again for the timeout\n";
CML.sync tmevt;

print "Delay again\n";
CML.sync (CML.timeOutEvt (Time.fromSeconds 2));
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print "Waiting again for the timeout\n";
CML.sync tmevt;

print "Done\n"
end

When you run the program with the abs command-line argument you will
see that there is a 5 second delay the first time but then each subsequent
wait takes no time. The timeout event is always enabled once the target time
has been reached. This will be useful in programs to produce an abort
indication after a time-out.

Semaphores
In this section I demonstrate an implementation of the traditional counting
semaphore for controlling access to a shared resource2. This example
demonstrates the use of the CML.withNack function.

A counting semaphore has a value that can be interpreted as the number of
copies of some resource that are available to be acquired. After the value
falls to zero, clients that attempt to acquire a copy of the resource will be
blocked until some become free.

A client will block waiting for a semaphore but may want to time-out while
waiting. If it times-out then the semaphore must know that the client has
given up on the semaphore. It mustn’t allocate the resource to a client that
has gone away. In a previous section I had a counter that sent a reply in
response to a simple query. The reply was sent asynchronously from an
auxillary thread. There was no way for the counter to know if the reply was
received. If the client did not accept the reply then it was silently dropped.
That was fine for the counter but the semaphore needs to know. This is
handled with the CML.withNack function.

The CML.withNack function creates a negative acknowledgment (Nack)
event that is associated with an event in a call to the select function in the
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client. The Nack event is enabled when the select does not choose the
associated event. The semaphore can detect the Nack event and respond.

To get things started here is the interface for a semaphore.

signature SEMAPHORE =
sig

type Sema

val new: int -> Sema
val acquireEvt: Sema -> unit CML.event
val acquire: Sema -> unit
val value: Sema -> int
val release: Sema -> unit

end

The new function creates a semaphore with an initial value which is the
number of resource copies available, typically 1. The acquire function will
acquire one copy. The acquireEvt version returns an event which is
enabled when the resource is granted. The value function returns the
current value of the semaphore. The release function returns one copy of
the resource to the semaphore.

Here are the data types for the messages and objects.

structure Sema: SEMAPHORE =
struct

structure SV = SyncVar

(* A reply channel and a nack event. *)
type Client = (unit CML.chan * unit CML.event)

datatype Request =
ReqIsAcq of Client

| ReqIsRel
| ReqIsGet of int SV.ivar

and Sema = Sema of Request CML.chan

The semaphore proxy only needs to contain the channel for sending requests
to the semaphore. Each client must have its own reply channel since replies
are delivered asynchronously and concurrently. I must use a channel, not an
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I-variable, since the semaphore must get an event when the client accepts
the grant. The Client type is used within the semaphore to represent a
client with an outstanding Acquire request. It holds a copy of the reply
channel and an event that will be enabled if the client abandons the request.

Here is the implementation of acquireEvt . I’ll call the event it returns the
"acquire" event.

fun acquireEvt (Sema req_chan) =
let

fun sender nack_evt =
let

val rpl_chan = CML.channel()
in

CML.spawn(fn () =>
CML.send(req_chan, ReqIsAcq (rpl_chan, nack_evt)));

CML.recvEvt rpl_chan
end

in
CML.withNack sender

end

fun acquire l = CML.sync(acquireEvt l)

The sender function is a guard function that will be called when the client
synchronises on the acquire event. Since the grant reply is just the unit
value, matching acquireEvt , there is no need to wrap the receive event
here. Here is an example of how to use acquireEvt .

CML.select[
CML.wrap(Sema.acquireEvt sema, hold),
time_out t
]

When the select starts, the sender function in acquireEvt will be called.
It will be passed a newly generated event value for the Nack. (Something
similar will happen within the time-out code.) The sender function spawns
a thread which sends off the Acquire request along with the Nack event to
the semaphore. Then it produces an event with recvEvt that is enabled
when the grant is returned. Here is the implementation of the acquire
message in the semaphore.
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fun sema() =
let

fun loop (value, pending: Client list) =
(

case CML.recv req_chan of
ReqIsAcq client =>

let (* FIFO order *)
val new_pending = pending @ [client]

in
if value <= 0
then

loop (value, new_pending)
else

loop (grant value new_pending)
end

The semaphore’s state consists of the current value and a list of clients that
are waiting to acquire the semaphore. When a new Acquire request comes in
I immediately append it to the list of pending clients. Even though
appending to a list is expensive I decided to do it so that requests are
granted in the order in which they arrive. This is an intuitively reasonable
fairness condition. (If the pending queue is likely to be long then a more
efficient implementation can be found in the Queue module of the section
called Queues and Fifos in Chapter 5). I unconditionally add the new client
to the pending list even if the semaphore is available because it makes the
code neater. The list should usually be empty and appending a value to an
empty list is not expensive.

Next, if the value is positive then I can grant a resource copy to a client. The
grant function attempts the grant and returns an updated state for the
semaphore.

(* Look for a pending client that will accept the grant.
Return the decremented value and the remaining pending
clients if a client accepts the grant.

*)
and grant value [] = (value, []) (* no pending clients *)

| grant value ((rpl_chan, nack_evt) :: rest) =
let

fun accepted() = (value-1, rest)
fun nacked() = (print "Got a nack\n"; grant value rest)
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in
CML.select [

CML.wrap(CML.sendEvt(rpl_chan, ()), accepted),
CML.wrap(nack_evt, nacked)
]

end

In the grant function I look at the first pending client. I attempt to send a
grant reply to the client which would satisy the client’s select call in
acquireEvt if it hasn’t timed-out yet. This attempt cannot block since the
client must have started to wait on the grant to cause the Acquire request to
be sent. So the client must either be still waiting or the Nack event will be
enabled.

If the grant is accepted by the client then the accepted function will be run
which will return the updated state for the semaphore, namely a
decremented value and the rest of the pending clients.

If there is a time-out in a client then the select call in its acquireEvt will
choose the time-out event. This will enable the Nack events associated with
the other events that it didn’t choose, namely the receive event for the grant.
The Nack will propagate back to the select call in the grant function
which will choose the Nack event and run the nacked wrapper function.
This loops to try granting to one of the rest of the pending clients. I’ve also
got a debug message in there to show what happens.

The other requests to the semaphore are simpler.

| ReqIsRel => loop (grant (value+1) pending)

| ReqIsGet rpl_var =>
(

SV.iPut(rpl_var, value);
loop (value, pending)

)

A Release request first increments the value. Then I call grant to see if the
newly released copy can be granted to some pending client. The Get request
just sends a copy of the value with no change of state. An I-variable is
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neatest for this. Here is the implementation of the client side of these
requests.

fun release (Sema req_chan) = CML.send(req_chan, ReqIsRel)

fun value (Sema req_chan) =
let

val rpl_var = SV.iVar()
in

CML.send(req_chan, ReqIsGet rpl_var);
SV.iGet rpl_var

end

Because of the complexity of the semaphore I’ve included more testing code
in the demonstration program. The first test just demonstrates the value
changing from the acquire and release. The initial value is 1 so that it is a
binary semaphore or mutex. The check function prints the semaphore’s
value.

fun test1() =
let

val sema = Sema.new 1
in

print "Test 1\n";
check sema "1";
Sema.acquire sema;
check sema "1";
Sema.release sema;
check sema "1";
()

end

and check sema n =
(

print(concat[
"Client ", n, ": the sema value is ",
Int.toString(Sema.value sema),
"\n"])

)

The second test demonstrates contention between two clients.

fun test2() =

208



Chapter 6. Concurrency

let
val sema = Sema.new 1

in
print "Test 2\n";
Sema.acquire sema;
check sema "1";
grab sema "2" 2;
delay 1;
Sema.release sema;
check sema "1";
delay 4;
check sema "1";
()

end

and grab sema n t =
let

fun hold() =
(

check sema n;
delay 3;
Sema.release sema;
check sema n

)

fun timedout() = print(concat["Client ", n, " timed out\n"])
in

CML.spawn(fn () =>
CML.select[

CML.wrap(Sema.acquireEvt sema, hold),
CML.wrap(time_out t, timedout)
]

)
end

and time_out t = CML.timeOutEvt(Time.fromSeconds t)
and delay t = CML.sync(time_out t)

The thread running the test2 function is client number 1. It acquires the
semaphore and calls the grab function which spawns a thread for client
number 2 to also try to acquire the semaphore but with a time-out. In this
test there will be no time-out. Instead when client 1 releases the semaphore
it will be granted to client 2 which will run the hold function. It will hold
the semaphore for 3 seconds and release it again. Figure 6-7 shows the
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timing of this interaction. The heavy lines show the times during which each
client holds the semaphore. (Client 2 is spawned from client 1 and
terminates at t=4).

Figure 6-7. The Timing of Semaphore Test 2

Test 3 is similar to test 2 but it delays long enough for client 2 to time-out.

fun test3() =
let

val sema = Sema.new 1
in

print "Test 3\n";
Sema.acquire sema;
check sema "1";
grab sema "2" 2;
delay 3; (* client 2 times out *)
Sema.release sema; (* sema attempts to grant *)
check sema "1"

end
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This test produces the following debugging messages which show the
time-out. You can also see that the Nack is not delivered to the semaphore
until client 1 releases and the semaphore tries to grant to client 2.

Test 3
Client 1: the sema value is 0
Client 2 timed out
Got a nack
Client 1: the sema value is 1

Semaphores via Synchronous Variables
In this section I present an alternative implementation of semaphores using
the M-variables that were introduced in the section called Synchronous
Variables. This implementation is closer to the traditional implementation of
languages like Java where multiple threads cooperate as peers to guarantee
the safety of the critical section. This contrasts with the implementation
presented in the section called Semaphores which relies on a central
manager thread.

The simplest case is the mutex which protects a critical section of code so
that no more than one thread can perform the code at a time. A mutex is a
binary semaphore, that is one with a count of only 0 or 1. The resource is the
critical section and only one copy is available for use. Here is an
implementation of a mutex using an M-variable.

structure Mutex: MUTEX =
struct

structure SV = SyncVar

type Mutex = bool SV.mvar

fun create() = SV.mVarInit true

fun lock mutex func =
(
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SV.mTake mutex;
let

val r = func()
in

SV.mPut(mutex, true);
r

end
handle x => (

SV.mPut(mutex, true);
raise x
)

)
end

The M-variable either holds a value or it is empty. It doesn’t matter what
that value is. I’ve used a bool . The critical section is represented by the
body of a function that is passed as an argument. The function doesn’t call
the acquire and release operations itself. This ensures that every acquire is
matched by a release.

When a thread calls the lock function it attempts to take the value out of
the mutex. If it succeeds then it can go on to run the argument function. It
puts the value back into the mutex to release the lock. Other threads that
call lock at the same time will block since the mutex is already empty. The
lock function must be careful to release the mutex if the argument function
raises an exception.

Next I would like to generalise this for counting semaphores. At first glance
you might try to use an M-variable with an integer value containing the
number of available copies of the resource. When the count drops to zero
leave the M-variable empty so that acquirers are forced to block when they
read the count. But this creates a problem for the release operation. The
release mustn’t block on an empty M-variable and it can’t test if the
M-variable is empty without a race condition or using some other mutex
around the M-variable.

In the following implementation I don’t let the M-variable become empty.
Instead I introduce a condition variable for acquirers to block on. The design
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is similar to the basic Java implementation which looks something like the
following (see [Holub]).

public synchronized void acquire()
{

while (count_ <= 0)
{

wait();
}

count_-;
}

public synchronized void release()
{

if (count_++ == 0)
{

notify();
}

}

The methods are synchronised to protect access to the count. If the count is
zero then the calling thread is blocked and put onto a wait queue for the
semaphore. The release method sends a notification to wake one of the
waiting threads. It only does this when the count increments from zero since
that is when there are acquirers waiting.

For the CML implementation I’ve reverted to having separate acquire and
release functions, rather than the argument function of the mutex above.
This is because there must be multiple sections of code in different threads
using the acquired resources. I’ve also ignored time-outs to simplify the code.
Here is the definition of the semaphore.

structure Sema: SEMAPHORE =
struct

structure SV = SyncVar

datatype Sema = Sema of {
rsrc: int SV.mvar, (* count of resources avail *)
cond: unit CML.chan (* signals a resource is avail *)
}

fun new n =

213



Chapter 6. Concurrency

(
Sema {

rsrc = SV.mVarInit(Int.max(0, n)),
cond = CML.channel()
}

)

I use a channel to send notifications to waiting acquirers. This lets there be
multiple outstanding notifications and waiting acquirers and each
notification will wake one acquirer. Here is the acquire function.

fun acquire (sema as Sema {rsrc, cond}) =
let

val n = SV.mTake rsrc
in

if n = 0
then

(SV.mPut(rsrc, n); CML.recv cond; acquire sema)
else

SV.mPut(rsrc, n-1)
end

The decrement of the count is synchronised by taking it out of the
M-variable. Any other thread trying to acquire will be forced to wait on the
M-variable. If the count is zero then the zero is put back into the M-variable
to release it and the acquirer blocks waiting for a notification on the channel.
When it is notified it tries to acquire the semaphore again. Here is the
release function.

fun release (Sema {rsrc, cond}) =
let

fun notify() = ignore(CML.spawn(fn() => CML.send(cond, ())))
val n = SV.mTake rsrc

in
SV.mPut(rsrc, n+1);
if n = 0 then notify() else ()

end

Again it takes the count out of the M-variable for synchronisation and puts
the incremented value back in. If the count was zero then it sends a
notification on the channel. This is done with an auxillary thread so that the
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release does not block. The notifications are queued by simply leaving
auxillary threads waiting for the opportunity to send.

An essential property of a correct implementation is that there be no waiting
acquirers while the count is greater than zero. But proving this is rather
tricky. All the different interleaving of steps over multiple acquirers and
releasers must be considered. For example what happens if one or more
releases happen in between the mPut and recv cond in the acquire
function? It appears to work correctly but I’m not certain. If I allowed
time-outs it would be worse. If a waiting acquirer disappeared because of a
time-out there would be an excess of notifications. Would the semaphore still
work correctly?

I’m more confident that the implementation of the section called Semaphores
is correct. The protocol for dealing with the count and the waiting acquirers
is implemented within a sequential manager thread. This is much easier to
reason about. This is the strength of the CML paradigm. Within the
boundary of a manager thread of a concurrent object the interactions
between client threads are kept strictly sequential and therefore much
easier to understand.

Notes
1. Read the CML reference documentation along with the following

material.

2. It is based on the lock server example in section 4.2.6 of [Reppy].
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Chapter 7. Under the Hood
This chapter discusses what goes on underneath the hood of SML/NJ and
CML. First I will spend a little time discussing how memory is used in the
SML/NJ run-time. Then I will examine the performance of some test
programs. My goal is to give you a feel for the performance of the SML/NJ
system in comparison with the C language.

Memory Management
This section describes the design of the SML/NJ heap system. It is based on
a multi-generational copying garbage collector (GC).

Garbage Collection Basics
A copying garbage collector works by having two memory spaces, a "from"
and a "to" space. Heap objects are allocated in the "from" space until it is
full. Then objects that are still live are copied to the "to" space. Then the
"from" and "to" spaces are swapped. The result of the swap is a "from" space
with all of the live objects and the "to" space is empty again.

Figure 7-1 illustrates these steps. Memory is allocated from the top of the
"from" space advancing downwards. The arrow marked "next" is the position
for new objects. The arrow is advanced down by the size of the object. When
it reaches the bottom the "from" space is full.

The grey regions are live objects. A live object is any object that can be
reached by following pointers starting from any of several root objects. All
other objects are garbage to be removed. As the GC visits each live object it
copies it to the "to" space. Then the "to" space is relabelled the "from" space
and the "to" space becomes empty again. The "next" arrow is reset to the end
of the copied objects ready for new objects to be allocated.
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Figure 7-1. Steps in Copying Collection.

It might seem that copying the live objects would make the GC slow. But
actually it’s quite fast compared to other kinds of collectors. The reasons for
this are:

• Only live objects are visited while tracing the pointers and only live
objects are copied. The fraction of the "from" space that is live can be quite
small for functional languages like SML which allocate many transient
objects, perhaps around 10%. Since the dead objects are never visited the
cost for deleting them is zero.
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• The allocation is very fast. It only takes a few machine instructions to
compare the "next" pointer with the bottom of the "from" space and
advance it by the size of the object.

• After a collection the live objects have been coalesced into one memory
region. This reduces the number of virtual memory pages occupied by the
heap which can help with the program’s performance.

When the cost of the copying is amortized over all objects that were allocated
in the "from" space the cost per object is very low. It’s low enough that
SML/NJ does not use a separate stack for the activation records of called
functions (which contain the local variables). Instead everything is allocated
in the heap and the speed is competitive with stack allocation. (See [Appel1]
for a detailed analysis of the costs). Compare this with C where you are
taught that allocating objects in the heap is much slower than allocating on
the stack.

Allocating activation records in the heap makes the implementation of
continuations very easy and fast which in turn makes CML efficient. In
effect the heap contains the stacks of each of the threads. Thread switching
is fast and the GC will clean up when they terminate.

You might be worried that the copying collector wastes memory since only
half of the heap space, the "from" space, is used for allocation. But no
physical memory needs to be allocated to the "to" space until the copying
starts and it can be removed again when the spaces are swapped. The peak
amount of memory used is the size of the "from" space plus the size of the
live objects (as they fill the "to" space).

Multi-Generational Garbage Collection
Even though the copying of live objects in the basic copying collector is not
that slow, as explained above, it can still be improved upon. SML/NJ actually
uses a multi-generational copying collector (MGGC).

219



Chapter 7. Under the Hood

The idea is that most objects are either transient and die soon or else they
are long-lived. A MGGC attempts to identify the long-lived objects and copy
them less often. The GC has multiple heaps called generations. A new object
is allocated into the first generation. If it persists for some number of
collection cycles then it is promoted into the second generation. For example
there might be only one scan of the second generation for 10 scans of the first
generation. This reduces the number of times that long-lived objects are
copied at the cost of delaying their eventual collection and increasing the
peak memory usage.

SML/NJ version 110.0.7 uses 5 generations. Each generation is a copying GC
with a "from" space and a "to" space. Each older generation is scanned 5
times less often than the previous one. Persistent objects slowly migrate to
the oldest generation. A "minor" collection just scans the first generation. A
"major" collection scans the older generations and looks for opportunities to
promote objects to the next older generation.

The SML/NJ GC has other optimisations too. Each generation is actually
divided into arenas that group together objects according to their kind:
records, list cells, strings and arrays. There is a separate area for "big"
objects which are never copied. Currently the only big objects are those
containing compiled code.

On most Unix systems the memory for the heap spaces is allocated using the
mmapsystem call. The C malloc function continues to work separately for
interfacing with the standard C library.

Run-Time Arguments for the Garbage Collector
The SML/NJ run-time takes the following arguments for the garbage
collector.

@SMLalloc=<size>

This sets the size of the area where new objects are allocated, in
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generation 0. The size can have a scale of K or M appended. The default
is 256K bytes. Increasing this will improve the performance for
programs requiring lots of memory. You will need to experiment to find
the best value.

@SMLngens=<int>

This sets the number of generations. The default is 5. You cannot set
more than 14. Increasing the number of generations should reduce the
amount of copying at the cost of consuming more memory. You probably
don’t need to change this.

@SMLvmcache=<int>

When the "from" space is emptied the memory can either be returned to
the operating system or kept by the run-time. This argument controls
this. The default value is 2 meaning that the "from" space memory for
the first 2 generations is not returned to the operating system after the
copying is done. This avoids the overhead of frequently freeing and
reallocating the memory. You probably don’t need to change this.

Heap Object Layout
In this section I describe the layout of the different kinds of heap objects:
records, list cells, strings and arrays. I won’t include complete details, just
the gist of it so that you can get an idea of the memory usage for SML types.

The biggest influence on the object layout is the need for the GC to be able to
find all of the pointers in an object without having the details of the SML
type that the object represents. This is achieved through two features of the
layout:

• every object is preceded by a descriptor word that contains some type
information for the whole object;
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• every word in the object can be identified from a descriptor or its contents
as being either data or a pointer.

The contents of strings and numeric values are known to be data just from
the descriptor. In a record each field is a single 32 bit word. The pointers in
the record fields are distinguished by examining the low-order 2 bits of each
word. The possible combinations are:

Table 7-1. The Low-Order Bits of a Record Field.

B1 B0 Description
0 0 The field is a pointer with 32-bit alignment.
1 0 The field contains an object descriptor.
x 1 The field contains a data value in the upper 31 bits, for

example the Int.int type.

So all data values in a record field must occupy at most 31 bits. Anything
larger must be in a separate object on the heap pointed to from the first
record. The first case is called an unboxed value and the second is called
boxed.

The SML type Int.int is a 31 bit integer that is stored shifted left by 1 bit
with the lower bit containing a 1 as shown in Table 7-1. You might think that
it would be expensive to manipulate these integers since the machine code
would have to shift the integer right when extracting it from the word and
shift it left to store it again. But most of these shift operations can be
avoided. No shifting is required to copy or compare the integers. Addition
and subtraction only require that one of the words have its bit 0 cleared
before proceeding. This is easy to arrange at no cost when one of the
operands is a constant. The remaining operations including multiplication
and division are relatively rare.

Since pointers are always word-aligned their low 2 bits are always zero so
this fits the scheme at no extra cost.

The pointer to an object points to the first word after the descriptor.
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Descriptors are distinguished from all other words by their low 2 bits so that
you can have a pointer into the middle of an object. The GC can always scan
backwards from the pointer to find the descriptor at the top. The next 4 bits,
at positions 2-5, contain a tag that indicates if the object is a record, string,
array, list pair, floating point (double precision) or other kind of object.

Some objects, such as records, strings and arrays have a built-in length. This
is stored in the remaining 26 bits of the descriptor word. The memory usage
of a string is rounded up to a multiple of 4 bytes. This includes a terminal
NUL character for compatibility with C. The length does not count the
descriptor.

Figure 7-2 shows the layout of the objects corresponding to the SML this
record value:

val x = {a = 2, b = 3:Int32.int, c = "abc", d = 3.14159}
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Figure 7-2. The Layout of a Record.

The 32 bit integer is stored boxed as a byte vector, similar to a string. Real
numbers are stored as 64 bit double precision floating point (and the length
field is unused).

So the expression

Array.array(10, 1): Int32.int Array.array
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will allocate 11 words for the array and 10*2 words for each boxed element
for a total of 31 words. The size would be only 11 words if the element type
was Int.int .

List cells are similar to records with two words for the head and tail and a
descriptor. The empty list is represented by a zero pointer. The SML option
type is similar. The NONEvalue is represented by a zero pointer while (SOME
a) is represented by a record of length one containing the value. Datatypes
are also like records with an extra discriminant field for the constructor. I
don’t have any more details on their representation.

Performance
In this section I run a few simple test programs to get a feel for the run-time
cost of the elements of SML/NJ programs. In the basic performance section I
look at simple loops and memory allocation. After that I look at the cost of
CML operations such as message passing and thread creation.

The times that I measure are wall time because I can get finer resolution on
my Linux system. The CPU timers in the SML/NJ Timer module have 10
millisecond resolution from the kernel’s internal timing. As long as the
system is idle while running the programs the two times should be similar
enough.

These tests are run on a 1GHz Athlon system running the Linux 2.2.19
kernel. There is 256MB of PC133 memory.

Basic SML/NJ Performance
The tests I describe in this section cover some of the basic code examples to
give you a feel for how fast SML/NJ runs. Remember that SML/NJ compiles
direct to machine language. It’s not some interpreted toy. I compare the
speed to similar C code. The test programs are called speed.sml and
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cspeed.c . The figures are execution times (wall time) averaged over five
runs on a quiet system. The C program is compiled with Gcc 2.96 using just
the basic optimisation "cc -O ".

The first test is just a simple loop to count up to 100,000,000. I’ve tried two
loops in SML counting up and down to see what the difference is.

fun countdown args =
let

val max_cnt = int_arg args

fun loop 0 = 0 (* it returns something *)
| loop n = loop (n-1)

in
Timing.timeIt "countdown" (fn () => ignore(loop max_cnt))

end

fun countup args =
let

val max_cnt = int_arg args

fun loop n =
(

if n = max_cnt
then

0
else

loop (n+1)
)

in
Timing.timeIt "countup" (fn () => ignore(loop 0))

end

The countdown function compares against the constant 0. The countup
function compares with a variable. The C functions use a for loop while
SML uses recursion. Table 7-2 shows the figures.

Table 7-2. Speed of the Counting Functions.

Function SML (millisec) C (millisec)
countdown 399 200
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Function SML (millisec) C (millisec)
countup 449 199

You can see that SML/NJ is half the speed of C. The countup function is 10%
slower for comparing with a variable compared with a constant. The C
functions are the same speed in each direction. It would be interesting to
study the machine code generated by SML/NJ but this is not readily
accessible.

The next set of functions all count the number of lines in a text file. The
number of lines is 10000 and they are all 60 characters long. This will test
how SML/NJ does with character processing and I/O. Both programs read in
the entire file into memory and then count the new-line characters.

In the SML program I’ve tried a number of different ways to count. The
straight-forward C-like function is the slow index function:

fun count_slowix text =
let

val len = size text

fun loop 0 l = l
| loop n l =
(

loop (n-1) (if S.sub(text, n) = #"\n" then l+1 else l)
)

in
loop (len-1) 0

end

This indexes into the text to test each character. A faster version uses the
Unsafe index function (see the section called The Unsafe API in Chapter 4):

fun count_fastix text =
let

val len = size text

fun loop 0 l = l
| loop n l =
(

loop (n-1) (if Unsafe.CharVector.sub(text, n) = #"\n"
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then l+1 else l)
)

in
loop (len-1) 0

end

The remaining functions use the Substring module, just to see how much
slower they are than direct indexing. The first two split the text into tokens
on new-line characters using two ways of testing for a new-line. The third
uses the Substring.getc function to step through the text.

fun count_tokens text =
let

val lines = SS.tokens (fn c => c = #"\n") (SS.all text)
in

length lines
end

(* See if isCntrl is faster. *)
fun count_cntrl text =
let

val lines = SS.tokens Char.isCntrl (SS.all text)
in

length lines
end

(* Count the characters individually using substring. *)
fun count_getc text =
let

fun loop ss n =
(

case SS.getc ss of
NONE => n

| SOME (c, rest) =>
loop rest (if c = #"\n" then n+1 else n)

)
in

loop (SS.all text) 0
end

The C program reads the entire file into a malloc ed buffer using fread and
counts the new-lines in the usual way. Table 7-3 shows the figures. The time
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to read the file is included in the readall function. The length entry is the
time to find the length of the string which shows that it comes from a field in
the string rather than counting the characters like strlen in C.

Table 7-3. Speed of the Line Counting Functions.

Function SML (microsec) C (microsec)
readall 4980 4609
length 1
slowix 21975
fastix 13792 1854
tokens 54856
cntrl 61299
getc 59050

SML/NJ does well reading in the file. Counting the characters is woeful
though. The compiler is supposed to generate in-line machine code for
Unsafe.CharVector.sub but it still ends up 7 times slower than C. The
Unsafe function is certainly faster than the normal one which has bounds
checking on each call.

The Substring function use the Unsafe functions internally. I’m surprised to
see that the getc version is slower than tokens .

Memory Performance
This test explores the performance of memory allocation. The program
builds a linked list of integers and then frees it. For the SML/NJ program
freeing consists of letting go of the list and triggering a garbage collection.
Here is the test code.

(* lst should be garbage after this function ends *)
fun build max_cnt =
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let
fun loop 0 rslt = rslt
| loop n rslt = loop (n-1) (n::rslt)

val lst = loop max_cnt []
in

print(concat["Built a list with length ",
Int.toString(length lst), "\n"])

end

fun linkedlist args =
let

val max_cnt = int_arg args

fun run() =
(

build max_cnt;
SMLofNJ.Internals.GC.doGC 0

)
in

run(); run(); (* go for steady state *)
SMLofNJ.Internals.GC.messages true;
SMLofNJ.Internals.GC.doGC 10; (* clear the heap *)
print "Starting the run\n";
Timing.timeIt "linkedlist" run;
SMLofNJ.Internals.GC.messages false;
()

end

A separate top-level function is used for building the list to ensure that the
list is truly garbage when it terminates. If it were nested within another
function some compilers might retain a reference to it in the outer function’s
scope.

I ran the program for different list lengths to see how the performance
scales. To try to ensure there is one collection I increased the heap size by
adding @SMLalloc=4096 to the run-time command line. This sets an
allocation size of 4M rather than the default of 256K and the heap arenas
are scaled accordingly. But I found that the speed doesn’t increase for values
over 1M. I always ended up with an additional major collection for lengths
over 50000 which cost around 10-20 milliseconds.
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Table 7-4 shows the figures for the linked list program. An estimate of the
amount of time doing a major collection is included. The collection times
have a 10 millisecond resolution so they are only rough.

For small list sizes SML/NJ is 3 times faster than C when allocating and
freeing heap. The speed advantage largely disappears at larger sizes. The C
figures are linear with the memory size. The SML/NJ figures have a hump
around the 200000 level when the major collection kicks in.

Table 7-4. Speed of Linked List Building.

Length SML (millisec) GC (millisec) C (millisec)
50000 5.2 15.6
100000 10.6 31.6
200000 47.2 10 64.3
500000 142.1 30 161.5
1000000 252.9 30 323.4

The bottom line is that the speed gain from faster memory allocation can
compensate for the loss in raw code speed to result in execution times for
SML/NJ comparable to C (or C++).

CML Channel Communication and Scheduling
This test measures how CML performs when sending messages through a
channel. The test sets up a number of receiver threads all blocked on their
own channel. A matching set of sender threads are started but they all first
wait on a time-out event. The time-out uses CML.atTimeEvt to produce a
single event that enables all of the senders at the same time. The receiver
records the time it receives the message and the delay in sending the
message. This is printed at the end of the test.

When the event becomes enabled the CML time-out code will put all of the
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sender threads onto the ready-to-run queue before switching to any of the
threads. This will test how the scheduler behaves when it has a large
number of threads ready. When a sender thread runs and sends its message
CML will immediately switch to the receiver thread. So the transmission
delay will be a measure of the overhead in sending a message and switching
threads. The receiver saves its record and exits which lets CML select the
next sender thread to run.

Here are figures for a run with 100 threads.

Pair 99 receives at 1004543299.986603 after 9
Pair 98 receives at 1004543299.986618 after 2
Pair 97 receives at 1004543299.986622 after 2
Pair 96 receives at 1004543299.986626 after 2
Pair 95 receives at 1004543299.986630 after 1
Pair 94 receives at 1004543299.986633 after 2
Pair 93 receives at 1004543299.986637 after 1
Pair 92 receives at 1004543299.986640 after 3
Pair 91 receives at 1004543299.986645 after 1
Pair 90 receives at 1004543299.986648 after 2
...
Pair 9 receives at 1004543299.987025 after 3
Pair 8 receives at 1004543299.987030 after 3
Pair 7 receives at 1004543299.987035 after 2
Pair 6 receives at 1004543299.987040 after 2
Pair 5 receives at 1004543299.987045 after 2
Pair 4 receives at 1004543299.987049 after 3
Pair 3 receives at 1004543299.987055 after 2
Pair 2 receives at 1004543299.987060 after 2
Pair 1 receives at 1004543299.987064 after 3
Pair 0 receives at 1004543299.987069 after 3
...
Timing Rx 0 8
Timing Sn 0 13
Timing Rx 1 3
Timing Sn 1 4
Timing Rx 2 2
Timing Sn 2 15
Timing Rx 3 2
Timing Sn 3 3
Timing Rx 4 2
Timing Sn 4 16
...
Timing Rx 92 2
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Timing Sn 92 3
Timing Rx 93 1352
Timing Sn 93 10
Timing Rx 94 4
Timing Sn 94 5
Timing Rx 95 3
Timing Sn 95 2
Timing Rx 96 2
Timing Sn 96 3
Timing Rx 97 4
Timing Sn 97 4
Timing Rx 98 3
Timing Sn 98 4
Timing Rx 99 3
Timing Sn 99 4

The first lines show the receiver records. The first number is the time when
the message arrived and the second is the transmission delay in
microseconds. The delay stays around 2 microseconds for all threads without
growing. The receivers run at around 4 microsecond intervals. This includes
the time to switch to a new thread, send the message and save the records.
This time does not grow as the number of threads increases.

The second set of lines show the time to spawn the sender and receiver
threads. The time is in the last column in microseconds. This time stays
fairly stable. There are occassional spikes which may be some house-keeping
inside CML.

I would rate this is as good performance.

Spawning Threads for Time-outs
In this section I examine the cost of spawning a thread and how it scales to
large numbers of threads. The first test is the thr_scaling program and it
uses time-out events. It spawns 5000 threads numbered from 5000 down to
1. The main thread creates a time-out event using timeOutEvt and passes
it to the spawned thread which immediately waits on the event. This models
an early implementation of time-outs in the Swerve server (see the section
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called Time-outs in Chapter 8). The time-out expires well after all of the
threads have been spawned. The program reports the time to spawn each
thread and the order that the threads wake up.

When a thread is spawned it starts running immediately while the parent
thread is blocked. The new thread then blocks on the time-out event which
transfers control to the CML scheduler to choose a new thread to run.
Blocked threads are placed on a time-out queue. If there is nothing else
happening in the program then this queue will be examined at each time
slice, typically 20 milliseconds.

The time-out queue is kept sorted in order of increasing expiry time. So as
more threads are created with later time-outs they get appended to the end
of the queue which takes longer and longer. But the thr_scaling creates
time-outs with 1 second resolution and the CML scheduler uses an internal
clock with a resolution of the time slice. Theis results in batches of threads
on the queue with the same expiry time. The size of the batch will be
determined by how many of these threads can be spawned in a time slice.

Each new member of the batch goes to the front of the queue section for the
batch since its expiry time is not greater than the others. For example each
member of the first batch goes to the front of the queue so this is a fast
operation. The threads in the batch appear in the queue in reverse order so
they will be woken in reverse order of spawning within the batch.

These quirks of the implementation help to explain the measured timing.
The following data shows the time taken to perform the CML.spawn in
microseconds and the finishing order.

Timing Thread 5000 18
Timing Thread 4999 17
Timing Thread 4998 5
Timing Thread 4997 3
Timing Thread 4996 16
Timing Thread 4995 3
Timing Thread 4994 3
Timing Thread 4993 4
Timing Thread 4992 4
...
Timing Thread 4374 5
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Timing Thread 4373 5
Timing Thread 4372 5
Timing Thread 4371 3
Timing Thread 4370 527
Timing Thread 4369 208
Timing Thread 4368 234
Timing Thread 4367 249
...
Timing Thread 1160 9844
Timing Thread 1159 5257
Timing Thread 1158 5586
Timing Thread 1157 8607
Timing Thread 1156 5032
Timing Thread 1155 5354
Timing Thread 1154 3641
Timing Thread 1153 10322
Timing Thread 1152 3774
Timing Thread 1151 4902
...
Timing Thread 4 11012
Timing Thread 3 7851
Timing Thread 2 16275
Timing Thread 1 6906
Thread 4371 finishes
Thread 4372 finishes
Thread 4373 finishes
Thread 4374 finishes
...
Thread 4998 finishes
Thread 4999 finishes
Thread 5000 finishes
Thread 4312 finishes
Thread 4313 finishes
...
Thread 5 finishes
Thread 2 finishes
Thread 3 finishes
Thread 4 finishes
Thread 1 finishes

The first 630 threads spawn quickly in only a few microseconds. This would
be the first batch. As the number of threads increases the time to spawn
grows rapidly to over 5 milliseconds each with some much longer times up to
16 milliseconds. This is rather a long time just to set up a time-out. It
resulted in poor performance in the Swerve server.
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The first thread to finish is number 4371 which corresponds to the last
thread in the first batch, where the spawning time jumps suddenly. This
confirms the time-out queue behaviour.

Behaviour of Timeout Events
The timeout_evt program shows some odd behavioural differences
between the events produced by the CML.atTimeEvt and CML.timeOutEvt
functions.

The program spawns 1000 threads all waiting on the same time-out event. I
expect that as soon as the event is enabled all of the threads will wake and
terminate. If the command line argument is "time" then it will use
CML.atTimeEvt otherwise it will use CML.timeOutEvt . It reports the
duration of each spawn operation and the finish time for each thread.

If I use the CML.atTimeEvt to create the event then all of the spawn
operations work in practically constant time of well under 10 microseconds.
There are only a few blips where the operations take 500 microseconds or
more. When the threads awake and terminate all 1000 finish in an interval
of around 20 milliseconds.

If I use the CML.timeOutEvt function then the time for the spawn operation
starts small but grows rapidly to take several hundred microseconds. When
the threads awake it takes around 200 milliseconds for them all to
terminate.

The reason for this behaviour stems from the implementation of the time-out
queue within CML as described in the section called Spawning Threads for
Time-outs. When using CML.timeOutEvt , each thread gets its own
individual time-out (to the resolution of a time-slice) which is calculated at
the time that the CML.sync on the event is attempted in the thread. Since
each thread starts at slightly different times this results in many different
time-out times which make the time-out queue quite long. The queue is kept
in time order using an insertion sort which is rather slow. This slows down
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the spawn operation since the CML.sync is performed before the spawn
returns.

When using the CML.atTimeEvt there is exactly one time-out time and the
time-out queue stays small.

So the lesson for good time-out performance is to keep the number of distinct
expiry times and the number of waiting threads small. The final
implementation of time-outs in the Swerve server goes to some lengths to
achieve this. See the section called The Abort Module in Chapter 9.
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Chapter 8. The Swerve Web
Server

Introduction
I am now going to work through the design and implementation of a simple
web server in CML, which I’ll call Swerve. As well as being a good
programming example it can be used as the basis for SML applications with
a web interface.

The server will have the following features.

• It will implement the HTTP 1.0 protocol with the GET, HEAD and POST
methods. This will be enough to support the posting of forms.

• Part of the URL hierarchy will be mapped directly to a directory hierarchy
as in Apache.

• CGI-BIN scripts will be supported.

• Built-in URL handlers will be supported providing a simple servlet
capability.

• There will be enough functionality to support forms via CGI.

• Multiple concurrent connections will be supported. But there will only be
one server process.

• Only one language will be supported, English.

There are several similar projects around. The Fox Project has the aim of
studying the application of advanced languages, in particular SML, to
networks and operating system software. As a demonstration they have
developed an implementation of a TCP/IP protocol stack along with a web
server to show it off, see [FoxNet]. Everything is implemented in SML except
the network device driver. The TCP/IP stack makes extensive use of functors
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to plug together the various layers of the protocol stack producing an
efficient implementation.

Another web server, but not in SML, is MIT’s Common Lisp Hypermedia
Server, see [CLHTTP]. It is a full-featured web server written in Common
Lisp. It is used as the framework for web interfaces to some of their artificial
intelligence projects as well as a few commercial projects. With more work
the Swerve server could be useful for similar projects written in SML.

Yet another web server, written in Haskell and using the language’s
concurrent features, is described in [HaskellServer]. More information on
using Haskell for concurrent programming can be found in
[AwkwardSquad].

Another example of a server written in SML is the ACAP daemon which is
part of the Cyrus e-mail system, see [ACAPD]. This implements a remote
store for address books, book marks etc. according to RFC2244. It uses CML
and SML/NJ so it is useful as another point of view on using CML.

The HTTP Protocol
Version 1.0 of the HTTP protocol is specified by RFC1945. You can obtain a
copy from the World Wide Web Consortium, (see [WWWC]). (Version 1.1 of
the protocol is specified in RFC2616). Also see RFC2396 for the latest
general URI syntax.

The following restrictions on the protocol will be made:

• Only HTTP/1.0 will be implemented. The RFC also prescribes HTTP/0.9
but who uses that anymore?

• Only the "http" scheme will be implemented, no FTP etc.

• Only the GET, HEAD and POST methods will be implemented. GET is
the basic page-fetch operation. HEAD is a variant of GET that only
returnes the headers. POST will only be used to submit form data.

242



Chapter 8. The Swerve Web Server

URL Syntax
The full monty for the URL syntax, from the RFC, is

URL = ( absoluteURL | relativeURL ) [ "#" fragment ]

absoluteURL = scheme ":" *( uchar | reserved )

relativeURL = net_path | abs_path | rel_path

net_path = "//" net_loc [ abs_path ]
abs_path = "/" rel_path
rel_path = [ path ] [ ";" params ] [ "?" query ]

path = fsegment *( "/" segment )
fsegment = 1*pchar
segment = *pchar

params = param *( ";" param )
param = *( pchar | "/" )

scheme = 1*( ALPHA | DIGIT | "+" | "-" | "." )
net_loc = *( pchar | ";" | "?" )
query = *( uchar | reserved )
fragment = *( uchar | reserved )

pchar = uchar | ":" | "@" | "&" | "=" | "+"
uchar = unreserved | escape
unreserved = ALPHA | DIGIT | safe | extra | national

escape = "%" HEX HEX
reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+"
extra = "!" | "*" | "’" | "(" | ")" | ","
safe = "$" | "-" | "_" | "."
unsafe = CTL | SP | <"> | "#" | "%" | "<" | ">"
national = <any OCTET excluding ALPHA, DIGIT,

In this syntax "*()" means zero or more repetitions and "1*()" means one or
more. The URL syntax allows national characters such as accented letters as
long as they are 8-byte characters and include the ASCII character set. For
example ISO-8859-1 "Latin 1" would be fine. This doesn’t restrict the
characters allowed in pages though. They are only constrained by the MIME
type for the page.
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Since I am only implementing the "http" scheme I will actually be
implementing this syntax:

http_URL = "http:" "//" host [ ":" port ] [ abs_path ]

host = <A legal Internet host domain name
or IP address (in dotted-decimal form),
as defined by Section 2.1 of RFC 1123>

port = *DIGIT

The host and scheme names are case-insensitive. If the port is empty or not
given, port 80 is assumed. Only TCP connections will be used. Only absolute
paths are allowed and they are case-sensitive.

The canonical form for "http" URLs is obtained by converting any uppercase
alphabetic characters in the host name to their lowercase equivalent (host
names are case-insensitive), eliding the [":" port] if the port is 80, and
replacing an empty abs_path with "/".

Characters may be encoded by the "%" escape sequence if they are unsafe or
reserved. When parsing a URL the path will be split up according to the
reserved characters before escapes are interpreted. So the path
/%2Fabc/def has /abc as the name of its first segment and def as the
name of the second segment. I will reject URLs having a forward slash or a
NUL character in a segment so that they can be directly mapped to file
names.

HTTP Requests
Each request is done using a separate TCP connection to the server. (Version
1.1 of the protocol allows more than one request per connection which is a lot
more efficient). The RFC says

... current practice requires that the connection be established
by the client prior to each request and closed by the server
after sending the response. Both clients and servers should be
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aware that either party may close the connection prematurely,
due to user action, automated time-out, or program failure, and
should handle such closing in a predictable fashion. In any case,
the closing of the connection by either or both parties always
terminates the current request, regardless of its status.

All lines in the message are supposed to be terminated with a CR-LF
character pair but applications must also accept a single CR or LF character.
In the body of the page the line termination will depend on the MIME type
but CRLF should be used for text types.

A request message looks like:

Full-Request = Request-Line
*( General-Header

| Request-Header
| Entity-Header )

CRLF
[ Entity-Body ]

Request-Line = Method SP Request-URL SP HTTP-Version CRLF

Method = "GET"
| "HEAD"
| "POST"

General-Header = Date
| Pragma

Request-Header = Authorization
| From
| If-Modified-Since
| Referer
| User-Agent

Entity-Header = Allow
| Content-Encoding
| Content-Length
| Content-Type
| Expires
| Last-Modified
| extension-header
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An example request line is

GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.0

After the request line come zero or more headers and then a blank line to
terminate the headers. The entity body is only used to supply data for the
POST method.

Each header consists of a name followed immediately by a colon (":"), a single
space (SP) character, and the field value. Field names are case-insensitive.
Header fields can be extended over multiple lines by preceding each extra
line with at least one SP or HT (horizontal tab), though this is not
recommended.

HTTP-header = field-name ":" [ field-value ] CRLF

field-name = token
field-value = *( field-content | LWS )

field-content = <the OCTETs making up the field-value
and consisting of either *TEXT or combinations
of token, tspecials, and quoted-string>

In this syntax the following definitions are used.

token = 1*<any character except CTLs or tspecials>

tspecials = "(" | ")" | "<" | ">" | "@"
| "," | ";" | ":" | "\" | <">
| "/" | "[" | "]" | "?" | "="
| "{" | "}" | SP | HT

TEXT = <any OCTET except CTLs, but including LWS>

CTL = a control character or DEL (ASCII 127)

LWS = [CRLF] 1*( SP | HT )

quoted-string = Any sequence of characters except double-quote and CTLs,
but including LWS, enclosed in double-quote characters.
There is no backslash quoting of characters within strings.
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The general headers are applicable to both requests and responses. They
pertain to the message itself rather than the entity being transferred. The
request headers provide extra information about the request. The entity
headers provide information about the entity itself. I will use them only in
the response. The next sections describe the headers.

The Date Header
This provides the data and time that the message was originated. The
preferred format of the date is the RFC822 format used in e-mail. For
example

Date: Tue, 15 Nov 1994 08:12:31 GMT

A well behaved server should accept all of the following date formats:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C’s asctime() format

All times are GMT (UTC). The following syntax describes all of the allowed
date formats.

HTTP-date = rfc1123-date | rfc850-date | asctime-date

rfc1123-date = wkday "," SP date1 SP time SP "GMT"
rfc850-date = weekday "," SP date2 SP time SP "GMT"
asctime-date = wkday SP date3 SP time SP 4DIGIT

date1 = 2DIGIT SP month SP 4DIGIT ; day month year
date2 = 2DIGIT "-" month "-" 2DIGIT ; day-month-year
date3 = month SP ( 2DIGIT | ( SP 1DIGIT )) ; month day

time = 2DIGIT ":" 2DIGIT ":" 2DIGIT ; 00:00:00 - 23:59:59

wkday = "Mon" | "Tue" | "Wed"
| "Thu" | "Fri" | "Sat" | "Sun"

weekday = "Monday" | "Tuesday" | "Wednesday"
| "Thursday" | "Friday" | "Saturday" | "Sunday"
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month = "Jan" | "Feb" | "Mar" | "Apr"
| "May" | "Jun" | "Jul" | "Aug"
| "Sep" | "Oct" | "Nov" | "Dec"

The Pragma Header
This is usually "Pragma: no-cache" to tell the recipient not to cache the
entity. I won’t generate it.

The Authorization Header
This header provides information such as a password to access secure
information. I will support basic password protection. Typically what
happens is that after a request has been received, if a password is needed,
the server returns a status code of 401 along with a challenge header looking
like:

WWW-Authenticate: Basic realm="WallyWorld"

The client must resend the request with an Authorization header such as

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

which contains a user id and password encoded as Base641. (It decodes to
"Aladdin:open sesame"). The syntax for the Authorization is:

basic-credentials = "Basic" SP basic-cookie

basic-cookie = <base64 encoding of userid-password,
except not limited to 76 char/line>

userid-password = [ token ] ":" *TEXT

The client can send the Authorization with the initial request if it has
already prompted the user for a password. See RFC1945 for more details for
HTTP 1.0 or RFC2617 for HTTP 1.1.
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The From Header
This identifies the person sending the request.

From: webmaster@w3.org

It’s not normally used but I’ll recognise it and pass it on.

The If-Modified-Since Header
The If-Modified-Since request-header field is used with the GET method to
make it conditional: if the requested resource has not been modified since
the time specified in this field, a copy of the resource will not be returned
from the server; instead, a 304 (not modified) response will be returned
without any Entity-Body.

An example of the field is:

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

I’ll recognise but ignore this header.

The Referer Header
This header provides the URL from which the request originated, if
appropriate. For example if a user clicks on a link in a web page then the
referer URL is the URL of the page. This is sometimes used to control access
to pages for example to prevent a page from being accessed unless the user
has passed through a sign-on page.

An example is

Referer: http://www.w3.org/hypertext/DataSources/Overview.html

I’ll recognise the header and pass it on.
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The User-Agent Header
This identifies the kind of browser or whatever that generated the request.
I’ll recognise the header and pass it on.

The Allow Header
This is used in responses. I won’t generate it. See the RFC for more details.

The Content-Encoding Header
This is used to indicate if the entity is compressed or otherwise encoded. I
won’t generate it in responses. An example is:

Content-Encoding: x-gzip

The Content-Length Header
This provides the size of the entity in bytes starting at the first byte after the
CR-LF that terminates the header. I will always generate a content length.
An example is:

Content-Length: 3495

The Content-Type Header
This provides the MIME type for the entity. An example is:

Content-Type: text/html

I will generate: text/plain, text/directory, text/html, image/jpeg, image/gif,
image/png where appropriate.
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The Expires Header
This is used in a response to tell the client how long to cache the document. I
won’t generate this.

The Last-Modified Header
This provides the date and time when the entity was last modified. I’ll
generate this. An example is:

Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

Extension Headers
Any other headers are allowed as long as their syntax is valid. I’ll just ignore
them.

HTTP Responses
A response looks a lot like a request.

Full-Response = Status-Line
*( General-Header

| Response-Header
| Entity-Header )

CRLF
[ Entity-Body ]

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

Response-Header = Location
| Server
| WWW-Authenticate

251



Chapter 8. The Swerve Web Server

The first line returns the status of the request: success, failure etc. A
numeric status code is provided for programs to read. A textual version is
provided for (some kind of) human readability in error messages.

The standard status codes are:

Status-Code = "200" ; OK
| "201" ; Created
| "202" ; Accepted
| "204" ; No Content
| "301" ; Moved Permanently
| "302" ; Moved Temporarily
| "304" ; Not Modified
| "400" ; Bad Request
| "401" ; Unauthorized
| "403" ; Forbidden
| "404" ; Not Found
| "500" ; Internal Server Error
| "501" ; Not Implemented
| "502" ; Bad Gateway
| "503" ; Service Unavailable

Full details of the status codes can be found in the RFC. I’ll just describe the
few that the server will use.

200 - OK

The entity follows in the Entity-Body section.

204 - No Content

Something went wrong. The Entity-Body section is omitted.

401 - Unauthorized

The client must supply a password to get the URL.

404 - Not Found

You know what this means.
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500 - Internal Server Error

General cop-out.

501 - Not Implemented

I’ll have a lot of this.

The response headers provide extra details for the response itself such as
elaborating on the status code. They are described in the following sections. I
will only use the WWW-Authenticate header.

The Location Header
This provides the location for status codes that redirect the client to some
other location such as the 30x codes. An example is:

Location: http://www.w3.org/hypertext/WWW/NewLocation.html

The Server Header
This provides identification for the server e.g. its name and version. I won’t
be using this.

The WWW-Authenticate Header
This header is returned along with a 401 status code to request the client to
authenticate itself. More details can be found in the section called The
Authorization Header.
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The Resource Store
Since a URL is a universal resource locator I’ll call the set of web pages the
resource store. This term will also include any dynamic web page generators.

The store is a hierarchy of nodes. The URL is a path through the store from
the top down. Each component of the URL path selects the next node in the
store. To be nice and general and allow for different kinds of nodes each node
will be passed the remainder of the URL’s path and can decide for itself how
to intepret this remainder. For example a node might be a CGI-BIN script
that interprets query parameters. A node might also synthesise part of the
store dynamically giving a different interpretation to the remainder of the
path than as just a directory path on disk. Figure 8-1 shows the passage of a
URL path through the store.

Figure 8-1. A URL navigating the Resource Store.

The input to the store is a list of URL path segments as described in the
section called URL Syntax. This list is passed in a message to the root node
of the store.
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Each node inspects the segment list that it receives. If it is empty then the
node is expected to return an entity. In the figure this is the file c.html .

If the list is not empty then the node inspects the first segment and chooses
another node to send the remainder of the list to. If the node cannot find
another node then an error will be reported.

I won’t include the ~user syntax that Apache supports.

In general a node could contain some state that is updated by the request. So
each of the nodes needs to be a concurrent object in the sense of the section
called CML Threads in Chapter 6. Different nodes can operate concurrently
so that the store as a whole can handle multiple URLs concurrently. In
addition a node could handle more than one request at a time by spawning a
new thread for each request. The total number of threads that can be
running in the store will be naturally limited by the maximum number of
connections that will be allowed. A node may implement some caching for
performance.

Each node will be responsible for controlling access to its part of the store. As
long as all URL requests are for reading the store and do not update the
store then the nodes can operate independently and concurrently. But there
might be a node that is the sole representative of a resource that is updated
by a request (for example a hit counter). In this case the serial behaviour of
the node will synchronise access to the resource. If more than one node can
alter a resource, such as a database or the file system, then they will have to
cooperate through a lock manager object.

Server Configuration
This section describes how the server will be installed on a platform and how
it is configured.

A typical server installation will include the following directories and files
underneath the server root directory.
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swerve.cfg The main server configuration file is in the root
directory.

bin/ This will contain the swerve program.
conf/ This will contain various configuration files such as the

mime.types file.
conf/icons/ The standard Apache icons will be kept here.
cgi-bin/ This will contain any CGI-BIN scripts. Access to these

scripts will have to be individually configured.
htdocs/ This is the root of the documentation tree.
var/ Files created by the server at run-time will be written

here. This directory must not reside on an
NFS-mounted file system to avoid file locking
problems.
Log files will be written in this directory. The space
requirements are expected to be small.

var/lock The lock file prevents multiple executions of the server.

var/pid The pid file contains the process ID of the server.
tmp/ Uploaded files and data will be cached here. Lots of

space may be required here. This directory must not
reside on an NFS-mounted file system to avoid file
locking problems.

Configuration File Syntax
A configuration file contains sections consisting of a section name followed by
parameters enclosed in braces and terminated by semicolons. For example

Server
{

ServerRoot = /home/swerve;
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Listen = localhost:80;
}

Free use of white space will be allowed as usual. Comments begin with a #
character. If the value of a parameter is not enclosed in double quotes then
leading white space after the equals sign and trailing white space will be
stripped.

Backslash quoting is allowed within quoted strings for the double-quote
character and also \n for a new-line and \t for a tab. A backslash at the end
of a line will continue a quoted string to the next line.

The names of the parameters and the sections are case-insensitive.

The Server Parameters
The following server parameters apply to the server as a whole. Where
allowed, relative paths are relative to the server root unless specified
otherwise.

ServerRoot

This is the path to the server installation. It must be an absolute path.
The configuration directory is expected to be at <ServerRoot>/conf .

VarDir

This is the directory where run-time files are kept. It must be an
absolute path and not on an NFS-mounted file system. For security this
should be accessible only by the user that the server is running as. The
default location is <ServerRoot>/var .

TmpDir

This is the directory where temporary files are kept. It must be an
absolute path and not on an NFS-mounted file system. For security this
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should be accessible only by the user that the server is running as. The
default location is <ServerRoot>/tmp .

Timeout

The value is the number of seconds to time-out a connection if a request
or response is not completed.

MaxClients

The value is the maximum number of connections that will be allowed
at a time.

MaxTmpSpace

The value is the maximum total size in bytes that temporary files in
TmpDir are allowed to consume. Connections that try to upload more
than this limit will be paused until space is available or they time-out.

MaxReqSize

The value is the maximum size in bytes that an entity in a request is
allowed to have. These entities, such as uploaded files or form data, are
saved in temporary files in TmpDir (if they are too large to be held in
memory). By setting this limit you can stop one client from filling the
temporary disk space.

Listen

This sets the port to listen on. This differs from Apache. The possible
values are localhost: <port> or just : <port> .

ServerName

This sets the web address of the server. It is used for URLs generated
by the server that refer to its own resources, for example icons. It is
required.
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User, Group

These set the user and group name to run as, if the server is started as
root.

DirectoryIndex

This sets the name of the file in each directory that implements a node,
which will be used as the index for the node. The default is index.html

TypesConfig

This sets the path to the mime.types file. This file maps from file
extensions to mime types the same way as Apache. The default is
<ServerRoot>/conf/mime.types .

The default type for an unrecognised file will be fixed at text/plain .

ErrorLog

This sets the path to the error log file. It must be an absolute path. The
default is <ServerRoot>/var/errors . Unlike Apache, the log format
will be fixed.

LogLevel

This sets the logging level. The possible values are: debug , info , warn
and error . They are case-insensitive. The levels are ordered e.g. a level
of warn includes all error messages as well.

The Node Parameters
The contents of the resource store is described by a series of node sections.
Each legal URL path is described by a node section. The section describes
how the path is implemented and what access controls apply.

An implementation of a path can be either:
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a file-system directory;

When a file-system directory implements a path then optionally all
subdirectories will implement extensions of the path. That is, if the URL
path /a is implemented by the directory /home/swerve/htdocs/a
then the subdirectory /home/swerve/htdocs/a/b will implement the
path /a/b . See the WithSubDirs option below.

a CGI-BIN script;

The section will specify the path to a CGI-BIN script.

some built-in handler.

The server may have some built-in handlers which can be associated
with nodes.

A node section looks like this.

Node /
{

Directory = /home/swerve/htdocs;
WithSubDirs = yes;

}

The URL path to the node follows the Node keyword. The root node is
described by the path / . URL "percent escapes" are allowed in the path.
Remember that URL paths are case-sensitive. The node parameters follow.

Directory = path

This specifies that the node is implemented as a disk directory. If the
path is relative then it is relative to <ServerRoot>/htdocs .

The node will read a file named .swerve in its directory to look for new
authorisation or option parameters. If it finds authorisation parameters
then they must supply a complete valid authorisation which will replace
that in the configuration section. If it finds an Options parameter then
these will add to or override options in the configuration section.
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BuiltIn = name

This specifies that the node is implemented by some built-in handler in
the server.

Script = path

This specifies that the node is implemented by a CGI-BIN script. If the
path is relative then it is relative to <ServerRoot>/cgi-bin .

Exaclty one of Directory, BuiltIn or Script must appear in each node
section.

Options = [inherit|all|none] *{[+-] [FollowSymLinks|WithSubDirs]}

This specifies extra options that apply to the node. The keywords are
case-insensitive.

The first keyword can be "all" to enable all options, "none" to disable all
options or "inherit" to inherit options from the next higher node. Only
the WithSubDirs and FollowSymLinks options can be inherited.

If this Options line appears in a .swerve file then the inherited options
include changes made by an Options line in the configuration file’s node
section for the corresponding URL path.

If this parameter is omitted in the configuration file then "none" is
assumed. If it is omitted in the .swerve file then no change is made to
the node’s options.

Subsequent keywords are preceded by a "+" or a "-" to enable or disable
the option for this node.

The FollowSymLinks option allows symbolic links in directories to be
followed (without affecting the URL path).
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The WithSubDirs option allows each subdirectory to automatically
implement an extension of the URL path of the node as described above
for the Directory option.

AuthType = Basic

This specifies the "Basic" authentication scheme which checks user
names and passwords. This parameter is required to enable
authentication for access to the node.

AuthName = "Realm"

This specifies the realm name for basic authentication. A client typically
maintains separate user name and password pairs for each realm.

AuthUserFile = /web/users

This specifies the path to a file that lists user names and their
passwords. If the path is relative then it is relative to the server root.

The format is the same as for Apache i.e. each line is
<user>:<password> except that the passwords are not encrypted. Since
they aren’t encrypted colons are not allowed in passwords.

There is no encryption since the Unix crypt() function is not available
in the SML/NJ libraries and it’s not important for this web server.

AuthGroupFile = /web/groups

This specifies the path to a file that lists user groups. If the path is
relative then it is relative to the server root.

The file format is the same as for Apache. Each line of the group file
contains a groupname followed by a colon, followed by the member
usernames separated by spaces for example:

mygroup: bob joe anne
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AuthAllowUsers = bob joe

This specifies a list of user names, separated by spaces, that are allowed
to access the node, if they are authenticated.

AuthAllowGroups = mygroup

This specifies a list of group names, separated by spaces, that are
allowed to access the node. All users in the group are allowed access if
they are authenticated.

The AuthAllowUsers and AuthAllowGroups parameters together produce a
list of user names. If this list is empty then all users will be allowed if their
password is authenticated. To disallow all users just provide a dummy user
name in AuthAllowUsers that has no password since this user can never be
authenticated.

The contents of the user or group files will be read each time a request is
received. This allows changes to the files to be immediately available but it
will be a bit slow.

In the section called The Resource Store I describe how URLs are interpreted
by being passed down through the tree of resource nodes. The URL must
pass authentication at each node that requires it. This allows the
authentication scheme at a higher node to block access to allow lower nodes.

The Architecture of the Server
The main functional blocks of the server are shown in Figure 8-2.
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Figure 8-2. The Functional Blocks of the Server.

The listener object listens for incoming connections on the main port, for
example port 80. For each new connection the operating system will create a
new socket. The listener will spawn a new concurrent object that
implements the http protocol over the socket.

The protocol object communicates with the resource store. It passes the
HTTP request to the root node of the resource store. The request trickles
down through the store until a node is reached that will handle it. This node
has a concurrent object that performs the request. The handler transmits a
response value back to the node which passes it back to the protocol object.
This response value generates the body of the response on demand. For
example if a file is to be returned then the file name is passed back to the
protocol object which will arrange for it to be read from disk.

The messages passed between the protocol object, resource node and handler
make up the connection protocol. It is implemented as SML datatypes
passed over channels.

Logging is handled by a separate concurrent logging object. This ensures
that logging messages from different sources don’t get intermingled up. A
separate logging protocol will be defined for sending logging messages.
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The configuration module holds all of the configuration data for the server.
Since this data is constant it is not in a concurrent object. It is just a global
(singleton) module.

The allocation modules ration access to system resources. Limits are placed
on the number of open file descriptors and the amount of temporary disk
space that client connections may use. A client will be paused until the
resources become available or a time-out happens.

Entities, Producers and Consumers
An entity is a central object in the server. It could be a HTML web page or
image being sent to the client or a form being posted by the client. Outgoing
entities can come from a disk file or be generated by a CGI script. Incoming
entities need to be stored before being passed to a CGI script. It must be
possible to access entities concurrently.

The producer/consumer framework supports these ways of handling entities.
A producer is a thread that delivers an entity to a consumer. The delivery
happens over a CML channel using the Xfer protocol. There are different
kinds of producers depending on the source of the entity. Figure 8-3 shows a
class diagram for these objects.

Figure 8-3. Entities, Producers and Consumers.
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datatype Entity =
Entity of {

info: Info,
body: MKProducer
}

| None

and Info = Info of {
etype: MType option,
encoding: Encoding option,
length: int option,
last_mod: Date.date option
}

An entity has attributes for its content type (a MIME type), encoding, length
and last modification date. The encoding indicates the kind of compression
used on the entity, which is not implemented at the moment. All of these
attributes are optional. The length will always be taken from the size of the
entity’s data when available.

The body of an entity is a place holder for the data. The data could be stored
in memory or in a disk file etc. If it is in a disk file then each producer opens
the file concurrently. An entity can be null (None) with neither header nor
body for the cases where HTTP requests contain no entity.

Producers and consumers are abstract classes. The framework allows any
object to be a producer or consumer if it can talk the Xfer protocol over a
channel. This procotol is illustrated by the sequence diagram in Figure 8-4.
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Figure 8-4. The Producer-Consumer Transfer Protocol.

(* A producer sends messages of this type to its consumer. *)
and XferProto =

XferInfo of Info (* send this first *)
| XferBytes of Word8Vector.vector (* then lots of these *)
| XferDone (* then one of these *)
| XferAbort (* or else one of these *)

withtype Consumer = XferProto CML.chan
and MKProducer = Abort.Abort -> Info -> Consumer -> CML.thread_id

(* This creates a producer for an entity. *)
val startProducer: Abort.Abort -> Entity -> Consumer -> CML.thread_id

The Info message sends the attributes of the entity. Then multiple Bytes
messages send the body of the entity as chunks of bytes. The normal end of
the transfer is indicated by the Done message. If the client connection is
aborted, for example by a time-out, then the transfer can be aborted after
the Info message by an Abort message. If an entity is null then no Info or
Bytes messages are sent, only a Done. The producer thread terminates after
the Done or Abort message.

An entity has a startProducer method that spawns a new producer
thread. Most entities can spawn any number of these and run them
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concurrently. An exception is for process producers. A process producer
delivers its entity from the stdout of a CGI script. This can only be done
exactly once. The child process will terminate as soon as the delivery as done.

In actuality in the current implementation of the server there will only be
one producer for an entity. But if caching of entities in memory was
implemented then it would be possible to run multiple concurrent producers.

Requests and Responses
The main objects of the protocol between a client connection and the store
are the Request and Response objects. A Request contains all the
information about the HTTP request from the client including details of
where to return the response. The Response contains the status, headers and
an entity (which may be empty).

Here is the definition of a Request.

datatype Request = Request of {
method: Method,
url: URL.URL,
protocol: string, (* e.g. "HTTP/1.0" *)
headers: HTTPHeader.Header list,
entity: Entity.Entity,

(* Information from the connection. *)
port: int,
client: NetHostDB.in_addr,

(* The store sends its response here. *)
rvar: Response SyncVar.ivar,

(* This is the abort object from the connection. *)
abort: Abort.Abort
}

and Method = GET | HEAD | POST

The connection information includes the client’s address for CGI scripts. The
port number is useful for associating resources such as temporary files with
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a request. A response to the request is sent to the I-variable in the request.
This allows the connection and resource store to be completely decoupled.
The connection manager thread will block waiting for a response. Responses
may be held up for example if there is a shortage of file descriptors or
temporary file disk space.

The abort object in a request carries an indication of whether the connection
has been aborted, typically because of a time-out. It provides both a flag that
can be tested and a CML event that can be synchronised on. Whenever a
request is to be blocked for some reason the blocking thread should also
select on the abort condition to return from the wait early.

Here is the response. It just carries the status, extra headers and the entity.

and Response =
Response of {

status: HTTPStatus.Status,
headers: HTTPHeader.Header list,
entity: Entity.Entity
}

The Content-Type, Content-Encoding, Content-Length and Last-Modified
headers are derived from the entity itself. The headers field provides any
other headers. A CGI script can ask that a request be redirected to a
different URL. This is allowed for in the Response but I haven’t fully
implemented it.

Resource Store Nodes
Each node in the resource store is implemented by at least two threads. The
first is a backbone thread that routes the requests through the store. The
second is the handler thread that runs the request. A node could be written
to run multiple concurrent requests in which case the handler thread would
spawn more handler threads. In the current implementation no node
handles requests concurrently. The backbone node also implements common
policies such as authorisation.

269



Chapter 8. The Swerve Web Server

Figure 8-5 is a collaboration diagram that shows the interractions between
the threads.

Figure 8-5. A Resource Store Node.

The backbone nodes are instances of a generic node represented in the
diagram by the GENERIC_NODEsignature. Actually a generic node is a
functor which is specialised for each kind of handler. This gives the backbone
node access to properties of the kind of handler which it uses to decide how
to route a request.

A request enters the resource store by calling the deliver() function. This
passes the request to the root backbone node. A backbone node will examine
the URL and decide whether it is for itself or for a child node or if it can’t be
handled at all. If it is for a child node it will use the forward_child()
function to pass it to the child node.

If a request is to be handled by the node it will be passed to the handler
object via a mailbox. The mailbox provides unlimited buffering of requests.
This frees up the backbone node for more requests. This way a slow handler
node cannot prevent requests passing through to child nodes.
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The handler object generates a Response value and sends it back to the
backbone node. The backbone node then routes it to the client’s connection
object.

The Connection Protocol
The connection protocol is best illustrated by the collaboration of the HTTP
protocol handler and a CGI handler. Figure 8-6 shows this while omitting
the resource store nodes.

Figure 8-6. Connection-CGI Collaboration.

In step 1, the protocol handler reads a complete request from the client
connection. This includes parsing the headers and reading in any entity
body. It is important to read in the entire body at this point because simple
clients such as Perl scripts will block waiting for the server to read the
complete request before fetching any of the response. If the server tried to
send a response (maybe an error response) while the client was blocked
there would be some risk of a deadlock.

Bodies normally only accompany posted forms and are fairly small. Large
bodies normally only come from uploaded files. If the entity body is large it
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will be copied to a temporary file. Step 2 shows the creation of a temporary
file. If the entity body is small it will be kept in memory and the temporary
file step will be skipped. The entity object will contain the appropriate
producer for the file copy or the in-memory copy.

Next, in step 3, the entire request is wrapped up and delivered to the
resource store which routes it to the CGI handler. The CGI handler creates a
child process in step 4 passing in the CGI environment variables. In step 5 a
producer and consumer pair are created to transfer the entity body from the
request to the stdin of the CGI script. The consumer is run as a separate
thread to avoid a possible deadlock if the script does not read all of its input
before writing some output.

Next, in step 6, the CGI handler reads the headers of the script’s response.
The entity body is not read at this time. Instead an entity with a special
proc producer is created to represent the body waiting in the pipe. This
entity is wrapped up with the status and headers to make a Response object
which, in step 7, is sent back to the HTTP protocol handler which originated
the request.

Finally, the protocol handler writes the response status and headers to the
connection. In step 8 it creates a producer for the response’s entity body. In
step 9 it behaves as the consumer to write the body to the connection in step
10. This means that the body data is read directly out of the pipe from the
CGI script and written to the network socket.

The proc producer deals with shutting down the CGI script process when it
completes the transfer.

Time-outs
A tricky aspect of the design is dealing with abnormal events such as
time-outs, broken connections etc. The connection handler starts a timer
when the connection is established. If the entire request is not completed
within the time-out then it must be aborted. Similarly if the connection is
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broken then the server must abort further processing.

There is no way to interrupt a CML thread. Abnormal events must be
delivered conventionally using a message or CML event. The threads
running the request must poll for the abort condition. Ideally the abort
condition is checked before every expensive operation. Everywhere a thread
blocks to wait on an event, it must wait on an abort event too.

In practice it will be awkward to check comprehensively for an abort. I can
allow the objects in the request processing (see Figure 8-6) to continue on for
a while after the connection is aborted as long as they have no side-effects.
The garbage collector will clean up the left-overs. Here are the places where
I check for an abort condition.

• The HTTP protocol handler will abort waiting for a response from the
resource store. It will then immediately finish with the connection.

• A receive operation from the network socket will be aborted.

• When the request waits for the allocation of some system resource it can
abort.

• A producer that is transferring from a file or a child process will check for
an abort condition before each data transfer. However it can’t abort an I/O
wait.

• Reading and writing to a CGI child process checks for abort conditions.
The child process will be killed in this case.

If the client closes the connection there is no way for the server to detect this
quickly. The close won’t be noticed until the server attempts to write the
response to the socket. At this point an I/O exception will result and an abort
condition will be forced to shutdown the rest of the request handling.

System Resource Management
A robust server must not fail if it runs out of the resources it needs for the
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load it is serving. This would at the least leave it open to a denial-of-service
attack. The resources to worry about are

• file descriptors

• temporary file space

• the process limit

The file descriptor budget that is proportional to the number of connections
is

• 1 for the socket

• 1 to write and then read a temporary file if required

• up to 4 while opening the pipes to a child process, 2 while talking to the
child

This could mean 4 file descriptors per connection when running a CGI script
with a large uploaded file. The file descriptor limit on my RedHat 7.1 system
is 1024 so there is a possibility of running out of descriptors at a modest
number of connections. (Well not really, for a small scale web server like this,
but it’s a good exercise). The server includes an Open File Manager that
counts the number of open file descriptors. It blocks the processing of a
connection until enough file descriptors are available for the connection.

Similarly a limit is placed on the total amount of disk space that temporary
files can consume. A connection will be blocked until the required amount of
disk space becomes available. There is also a limit on the maximum size a
request can have so that a single request won’t fill the disk space or block
waiting for space that will never be available.

I haven’t implemented a manager for the number of child processes. On my
system I have a 2040 process limit. Since there is likely to be only one per
connection the connection limit should be enough to prevent the server from
running out of processes.
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If a connection is blocked long enough due to lack of resources then it will
time-out. I rely on the garbage collector to clean up after a time-out so I will
need to have some sort of finalisation to close open files and remove
temporary files after the collector has run. I’ve implemented a generic
finalisation system for the server based on weak references.

Shutting Down the Server
At the moment the server is only shut down with an INTR or TERM signal. I
haven’t implemented any cleanup of temporary files or child processes. A
better way to control the server would be to have some privileged port that
allows the administrator to

• report statistics such as the current number of connections

• change the maximum number of connections

• stop the server

The proper way to shutdown the server would be to set the connection limit
to zero to refuse all new connections, wait for all existing connections to close
and then stop the server. I’ll leave this as an exercise for the reader.

Building and Testing the Server
In the source code directory you will find a directory called swerve that
contains the source of the server and some simple test cases. For details on
the source code see the section called The Organisation of the Code in
Chapter 9. To build the server just type make in this directory. This will run
the SML compiler, assuming that it is in your PATH.

The resulting heap and executable files can be found in the main
subdirectory. You will need to edit the main/swerve script to set the path
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variables. The libdir variable is the absolute path where the heap file is
found. This will be the main directory until you install the server somewhere
else. The smlbin variable is the absolute path where you have installed the
SML/NJ binaries.

There is a server configuration in the tests/tree_norm subdirectory. This
contains some test cases for manual testing of the server. (The "norm" refers
to testing the normal behaviour of the server). The configuration file is
norm.cfg . Before you can run the server you must edit the ServerRoot
parameter to be the absolute path to the tree_norm directory. You may
want to change the port number too.

The test tree implements the notable URL paths shown in Table 8-1.

Table 8-1. The Notable Norm URLs.

Path Purpose
/ This returns index.html in the htdocs directory.
/secure This returns index.html in the htdocs/secure

directory. This is for testing user authorisation.
/sub This returns a list of the files in htdocs/sub directory.

Selecting page.html tests some image handling on a
complex page.

/hw This runs a built-in handler that just returns a "hello
world" message.

/sleep?3 This runs the "sleep" built-in handler that delays for
the number of seconds given in the query. This is used
to test simultaneous requests to the same handler.

/icons The fancy indexing of directories refers to icons with
this path. The icons are in the kit/icons directory.

/tmp This path points to the /tmp directory on your system.
On mine, having run KDE and sometimes Gnome,
there are lots of weird files to exercise the fancy
indexing of the server.
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Path Purpose
/cgi/env This path runs the cgi-bin/printenv shell script.

This is the traditional example CGI script that prints
all of the environment variables that the server passes
to CGI scripts.

/cgi/test-post This runs the cgi-bin/test-post shell script. This
is similar to printenv except that it echoes stdin so
that posted form data can be seen.

/cgi/form-handler This runs the cgi-bin/form-handler Perl script.
This script runs a simple form that asks for your name
and echoes it.

/cgi/line-counter This runs the cgi-bin/line-count Perl script. This
is used to test the uploading of a text file. The script
returns the number of lines in the file.

To start the server go to the tests/tree_norm directory and use the run
script. The configuration file sets the log level to Debug. The debug messages
will appear in the var/errors log file. There are enough for you to trace the
operation of the server. Note that the file continues to grow over successive
runs of the server unless you delete it.

After you stop the server you should check that the tmp directory is empty
and the var directory only contains the log file.

The test plan so far has been casual. Most of the tests consist of just poking
at the links. The testing of multiple requests and authorisation is more
involved. The following sections describe the test plan. I’ve tested it with
both Netscape 4.76 and Konqueror 2.1.1.

Basic Testing
Try out each of the following steps from the main menu, in any order.
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1. Go the main page at http://localhost:2020/ (or whatever port you
have chosen). You should see "Welcome to the Swerve Web Server" along
with a menu.

2. Click on "hello world". You should see a single line of text saying "hello
world". This uses the text/plain MIME type.

3. Click on "5 second sleep". The browser should twiddle its thumbs for 5
seconds and then you see "Slept for 5 seconds". This is more useful for
multiple request testing below.

4. Click on "sub-directory". This shows a fancy index of the htdocs/sub
directory. There should be a folder icon with the empty directory. Click
on it to see the absence of contents. Clicking on the "Up to higher level
directory" will take you back.

Examine the README and image files. Clicking on page.html will
show a page containing all of the image files.

5. Click on "/tmp". This will show an index of your /tmp directory. Mine
contains various weird files such as sockets for KDE and X11. For
example clicking on the socket in .X11-unix/X0 will result in a "Not
Found" error since the file is inaccessible. You can probably find a file
that is not readable by you. Clicking on it should result in the "Access
Denied" error.

6. Click on "printenv". This should return a list of all of the CGI variables
passed to the script. The HTTP_USER_AGENTvariable will describe your
browser. The SERVER_SOFTWAREvariable describes the version of the
server. Your PATHand SHELLshould also appear. If you click on
"printenv with a query" you will see that the QUERY_STRINGvariable
appears. It should contain name=fred%20flintstone&page=3 .

7. Click on "simple form". This returns the testform.html page. This
contains a simple form that requests you to enter your name. If you
enter Fred Flintstone and click Send the result should show that stdin
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contained the string
given=Flintstone&family=Fred&Submit=Send .

8. Click on "real CGI form". This form is generated on-the-fly by the
form-handler Perl CGI script. When you send your name the page is
updated with the name.

9. Click on "file line counter". This shows a form that invites you to enter a
file name. This should be the path of a text file that is around 100KB
long. This is plenty large enough to ensure that the uploaded file is saved
to disk in the tmp directory. You can check this in the debug messages in
the var/errors file. Look for the line with "TmpFile allocate file"
followed by the path to the temporary file. Check that the reported
length of the file is correct.

Congratulations. It basically works.

Testing Multiple Requests
This testing is fairly slight. The first part relies on the browser using
multiple connections to load the page.html file in the sub-directory of the
section called Basic Testing. Both Netscape and Konqueror will open several
simultaneous connections to the server to load all of the images.

Stop the server and edit the norm.cfg file to set MaxClients to 1. Restart
the server and follow the sub-directory link from the main menu. You should
see problems such as missing icons. If you click on the page.html file then
images are broken. Click on Reload a few times. Two of the images are
missing. If you study the log file it will not show any connection requesting
the missing images. This is because the requests are going to extra
connections which are being refused by the server. If you increase
MaxClients to 2 then only one of the images will be missing. At 3, all of the
images reappear.

This test has demonstrated that the server rejects connections according to
the MaxClients parameter. If you study the log file you will see multiple
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simultaneous connections. Using Konqueror to reload the image page I get
this pattern of Info messages:

2001 Sep 19 05:31:26 Info: New connection from 127.0.0.1:2525
2001 Sep 19 05:31:26 Info: New connection from 127.0.0.1:2526
2001 Sep 19 05:31:26 Info: New connection from 127.0.0.1:2527
2001 Sep 19 05:31:26 Info: End of connection from 127.0.0.1:2525
2001 Sep 19 05:31:26 Info: End of connection from 127.0.0.1:2527
2001 Sep 19 05:31:26 Info: End of connection from 127.0.0.1:2526
2001 Sep 19 05:31:26 Info: New connection from 127.0.0.1:2528
2001 Sep 19 05:31:26 Info: End of connection from 127.0.0.1:2528

This shows three simultaneous connections followed by a separate one for
the background image.

A different concurrent path through the server can be tested using the
sleep built-in handler. For this you will need two browser windows
side-by-side showing the main menu. Click on 5 second sleep in both browser
windows rapidly one after the other. The first window will return the "Slept
for 5 seconds" message after 5 seconds. The second will return it after 10
seconds. This is because the handler is single-threaded. The second request
waits in a queue for the first one to finish. Then it starts its own 5 second
delay. This test demonstrates multiple simultaneous requests routed
through the resource store to the same handler and handled in turn.

Testing Authorisation
In the tests/tree_norm/conf directory you will find a password file,
admin.pwd , and a group file, admin.grp , for testing the authorisation. (See
the section called The Node Parameters). Here is the password file.

fred:rocks
wilma:pebbles
barney:bowling
betty:mink

Here is the group file.
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Rubble: barney betty

These files are used by the authorisation configuration in the
htdocs/secure/.swerve file. Here is the file.

# This allows fred directly and barney via the group.
# Wilma should be barred.
AuthType = Basic;
AuthName = "admin";
AuthUserFile = conf/admin.pwd;
AuthGroupFile = conf/admin.grp;
AuthAllowUsers = fred;
AuthAllowGroups = Rubble;

This allows users fred, barney and betty.

From the main test page (see the section called Basic Testing) click on
"secure admin". You will be prompted for a user name and password. You
should be able to demonstrate that you cannot gain access for users fred ,
barney and betty except with the correct password and user wilma cannot
gain access at all. Since your browser probably remembers the user name
and password for the realm (from the AuthName parameter) you will need to
stop and restart your browser after each successful try.

Testing the Performance
Now for the big question. How does it perform? Not bad actually. To test it I
used the httperf program which is available from Hewlett-Packard
Research Labs2.

The httperf program can generate a load for the server at a fixed number
of connections per second. It reports the number of connections per second
that the server has actually achieved along with some statistics such as the
number of concurrent connections, milliseconds per connection. The program
must be run on a different machine to the server to get an accurate measure
of its performance. This is because it consumes a large amount of CPU time
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itself in order to keep its timing accurate. But for these tests I’ve run it on
the same machine as server.

These tests have been run on an AMD Athlon 1GHz processor with PC133
RAM. The kernel is Linux 2.2.19. The machine was idle while running the
tests. The performance is compared with a standard installation of Apache
1.3.19. Both servers have logging disabled so that disk writes don’t slow
them down.

These performance figures were made after the improvements from profiling
described in the section called Profiling the Server.

The tests fetch the index page of the tree_norm directory. This totals 957
bytes for Swerve and 1092 bytes for Apache.

The first test just tests the sequential performance. The client makes
connections one after the other as fast as possible and the number of
connections per second achieved is reported. The results are shown in Table
8-2.

Table 8-2. Sequential Server Performance

Server Conn/sec
Swerve 50
Apache 680

The speed of Swerve here is terrible. But notice how it is managing exactly
20 milliseconds per connection. The default time slice for the threading in
CML is 20 milliseconds. This points to a bug either in the server or the CML
implementation that needs further investigation.

The next test has the client generating new connections at a fixed rate for a
total of 4000 connections. If the server can keep up then it will serve them
all and the number of concurrent connections it handles will be low. If it
can’t keep up then the number of concurrent connections will rise until it
hits a limit which is 1012 connections on my machine. This limit comes from
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the maximum number of sockets that the client can open at one time. If this
limit is reached then the performance figure can be ignored and the server
be deemed to be completely swamped.

The Swerve configuration has a Timeout of 10 seconds and MaxClients of
1100. The LogLevel is Warn so that no connection messages are written to
the log file. I wait at least 10 seconds between tests to let the time-outs in
the Swerve server complete. This starts each run from a clean state.

Table 8-3 shows the figures (connections/second) for Swerve. When the
server starts falling behind I run multiple tests to get an idea of how
variable the performance is. The httperf command line used is

httperf -timeout=15 -client=0/1 -server=brahms -port=2020
-uri=/index.html -http-version=1.0 -rate=350
-send-buffer=4096 -recv-buffer=16384
-num-conns=4000 -num-calls=1

Table 8-3. Concurrent Swerve Performance

Offered Rate Actual Rate Max
Connections

100 100 8
130 130 11
150 150 28
170 170 14
190 186 21
190 181 19
190 175 16
190 170 18
200 195 20
200 191 19
200 192 30
200 189 21

283



Chapter 8. The Swerve Web Server

Offered Rate Actual Rate Max
Connections

210 197 21
210 198 24
210 195 22
210 193 26
220 212 39
240 206 33
240 203 32
240 170 29
240 200 29
260 160 28
260 201 64
260 197 30
260 138 36
280 206 41
280 202 31
280 219 35
280 202 57
300 215 44
300 216 91
300 228 41
300 229 42
320 182 52
320 195 52
320 173 33
320 230 34
350 123 906
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Offered Rate Actual Rate Max
Connections

350 189 96
350 238 40
350 154 47

You can see that the throughput increases linearly up to 190 conn/sec and
then starts to falter. As the load increases it peaks at around an average of
210 connections per second. At a load of 350 conn/sec, connections were
starting to time-out and the server was definitely overloaded.

Table 8-4 shows the figures for Apache.

Table 8-4. Concurrent Apache Performance

Offered Rate Actual Rate Max
Connections

100 100 13
130 130 7
150 150 8
170 170 10
190 190 12
200 200 145
200 200 133
210 210 33
210 210 123
220 220 76
240 240 165
260 260 178
280 280 199
300 190 1012
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Offered Rate Actual Rate Max
Connections

300 300 132
300 245 142
300 300 189
320 215 760
320 202 1012
320 258 547
320 210 760
350 220 1012
350 277 629
350 132 1012
350 243 1012

With Apache, the through-put increases linearly up to 300 conn/sec and then
starts to falter. At higher loads the throughput struggles to get up to around
270 conn/sec at best and at worst many cases of complete overload.

Comparing the two servers I can reasonably claim that the performance of
Swerve is around 2/3 of Apache. That’s not bad for a home-grown server
written in SML.

Profiling the Server
I did some investigation of the internal timing of the Swerve server to see
what improvements could be made. The performance figures in the previous
section were obtained after the improvements from profiling.

I’ve had performance problems from the handling of time-outs. I need to have
a flag that is set on a time-out and that can be tested. (See the section called
Time-outs for more details). In an earlier implementation I created a new
thread for each connection to wait for the time-out. The thread then set the
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flag. The trouble with this was that the time-out thread would hang around
in the server after the connection was closed, until the time-out expired. This
would result in thousands of threads in the server which clogged the CML
run-time. The time taken to spawn a new thread rose to over 15
milliseconds. The current implementation, described in the section called
The Abort Module in Chapter 9, only uses one thread and is much faster.

I’ve left some timing code in the server which can be enabled with the -T
Timing command line option and a log level of Debug. The timing code uses
the MyProfile.timeIt function to measure the wall-time execution of a
function, in microseconds. (See the section called The MyProfile Module in
Chapter 9). Here are some typical figures for the fetching of the index page
of the tree_norm test suite. (The page has been fetched several times to get
it into the Linux cache).

Timing abort request 18
Timing abort create 47
Timing Listener setupConn 67
Timing HTTP_1_0 get 618
Timing GenNode request 165
Timing HTTP_1_0 stream_entity 641
Timing HTTP_1_0 response 764
Timing HTTP_1_0 to_store 959
Timing Listener talk 1586
Timing Listener close 53
Timing Listener release 11
Timing Listener run 1733
Timing Listener died 74
Timing Listener connection 2263

The measurement points are described in Table 8-5. You should study the
Chapter 9 for more information on what is happening in the server.

What the numbers tell me is that the server can process a request in 2.2
milliseconds and so should be able to handle 450 requests per second. But
now if I run the server with 120 requests/second to get 3 or more concurrent
connections I get numbers like these:

Timing abort request 17
Timing abort request 7
Timing abort create 184
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Timing Listener setupConn 201
Timing HTTP_1_0 get 236
Timing abort request 7
Timing abort create 557
Timing Listener setupConn 564
Timing HTTP_1_0 get 150
Timing GenNode request 460
Timing abort create 465
Timing Listener setupConn 474
Timing HTTP_1_0 get 149
Timing GenNode request 226
Timing GenNode request 7
Timing HTTP_1_0 stream_entity 1890
Timing HTTP_1_0 response 2003
Timing HTTP_1_0 to_store 2495
Timing Listener talk 2740
Timing Listener close 66
Timing Listener release 39
Timing Listener run 3062
Timing HTTP_1_0 stream_entity 1695
Timing HTTP_1_0 response 1759
Timing HTTP_1_0 to_store 2477
Timing Listener talk 2633
Timing Listener close 35
Timing Listener died 140
Timing Listener connection 3678
Timing Listener release 13
Timing Listener run 3258
Timing HTTP_1_0 stream_entity 1723
Timing HTTP_1_0 response 1784
Timing HTTP_1_0 to_store 2347
Timing Listener talk 2501
Timing Listener close 32
Timing Listener release 47
Timing Listener run 3067
Timing Listener died 134
Timing Listener connection 3955
Timing Listener died 35
Timing Listener connection 3820

Now the performance has dropped to an average of 261 connections/sec. The
time to setup a connection has jumped due to the increased time to setup the
time-out. This comes from the extra overhead of the CML operations when
there are more events and threads in the server. The time to send a file to
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the connection has doubled since this involves lots of message sending which
is now slower.

Table 8-5. Timing Measurement Points.

Name Description
abort request This measures the time for the server in the Abort

module to process a request to add a new time-out.
abort create This measures the time for the Abort.create

function to run. It includes the time to send the
message to the server without waiting for any
reply.

Listener setupConn This measures the time to create the connection
object when a new connection arrives. This mainly
consists of setting a socket option and starting the
time-out by creating an Abort value.

HTTP_1_0 get This measures the time to read in the GET request
from the socket including parsing all of the
headers.

GenNode request This measures the time for the resource store to
forward the request through to the handler. It does
not include the time for the directory node handler
to run.

HTTP_1_0
stream_entity

This measures the time for the stream_entity
function to run which transfers the contents of the
page to the socket. This includes the time for
reading the page from disk.

HTTP_1_0 response This measures the total time to process a response.
This includes the stream_entity time above
along with the time to write the status and
headers.
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Name Description
HTTP_1_0 to_store This measures the total time to process a request

including the time to send it to the store and the
time to process the response (above).

Listener talk This measures the total time to run the HTTP
protocol for a connection including all request and
response processing.

Listener close This measures the time to close the socket after
the response has been sent.

Listener release This measures the time to clean-up any temporary
files.

Listener run This measures the total time for a connection
including all of the above Listener measurement
points.

Listener died This measures the time to tell the connection
manager that a connection has terminated.

Listener connection This measures the total time for a connection from
after the socket’s creation until its close.

Notes
1. See RFC1521 for a description of Base64 encoding

2. The URL is ftp://ftp.hpl.hp.com/pub/httperf
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Introduction
This chapter discusses the source code in more detail. First I will give an
overview of the organisation of the code. Then I will discuss each of the files
in detail. I’ll describe the files in order from the top (main) down to the
low-level code but you’ll want to jump around from file to file.

I won’t be including all of the source code in this chapter. The discussion will
concentrate on what I think are the non-trivial and non-obvious features of
the code. You should be reading the source code along with the discussions.

The Organisation of the Code
Perhaps the most awkward thing about the SML module system is that
circular dependencies between modules are not allowed. Declarations have
to be carefully partitioned between modules to avoid circular dependencies.
For example this often means that type declarations have to be factored out
to a separate module. This is because you can only have mutually recursive
types if they are datatypes in the same group of declarations (i.e. joined
with the and keyword) in the same module. So you end up with a tree of
modules to manage.

To help manage the modules I divide them into layers with each layer in its
own directory. The module dependencies between layers always point from
the top down. Table 9-1 shows the layers of the server and the files in each
layer. The layers are shown from the highest to the lowest. The files in each
layer are listed in alphabetical order. I usually only place one module in each
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file.

Table 9-1. The Module Layers of the Server.

Layer File (Module) Purpose
main main.sml (Main) This contains the main function

for the server.
startup.sml (Startup) This contains the code for

creating the lock and pid files,
setting the uid/gid and reversing
this on shutdown.

server connect.sml (Connect) This implements a type for a
connection along with I/O and
utility operations on the
connection.

http10.sml (HTTP_1_0) This implements the HTTP1.0
protocol over a connection and
communicates with the resource
store.

listener.sml (Listener) This creates the listener socket
and accepts new connections.

store builtin_node.sml
(SimpleBuiltinHandler)

This implements some built-in
node handlers.

cgibin_node.sml
(CgiNodeHandler)

This implements the CGI node
handler.

dir_node.sml
(DirNodeHandler)

This implements nodes that map
to files and directories.

gen_node.sml
(GenericNodeFn)

This implements backbone nodes
that route requests to handlers.
It provides a functor that is
specialise by each kind of
handler.

292



Chapter 9. The Swerve Detailed Design

Layer File (Module) Purpose
node_auth.sml (NodeAuth) This implements authorisation

checking functions.
node_factory.sml
(NodeFactory)

This implements a function to
create resource nodes of different
kinds.

node_handler_sig.sml
(NODE_HANDLER)

This defines the signature that a
node handler must have. This is
the configuration interface
between backbone and handler
nodes.

node.sml (Node) This defines common types for
resource nodes. This includes the
message protocol between
backbone nodes and handlers.
Some utility functions are
included.

resp_utils.sml
(ResponseUtils)

This implements a few utility
functions for creating HTTP
responses.

store.sml (Store) This is the entry point for the
resource store. It builds the node
tree and accepts request from
the HTTP protocol manager.

ietf entity.sml (Entity) This defines a type for a HTTP
entity. The entity producer and
consumer types and protocol is
also included. All of the kinds of
producers are implemented in
here.
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Layer File (Module) Purpose
http_header.sml
(HTTPHeader)

This runs the parsing of HTTP
headers. A type is defined to
represent all of the well-known
headers in a fully-parsed format.

http_msg.sml (HTTPMsg) This defines the types for a
HTTP request and response.

http_status.sml
(HTTPStatus)

This defines the type for a HTTP
status code.

ietf.lex (IETFLex) This implements a ML-Lex lexer
to help parse HTTP headers. It
performs all of the
regular-expression operations.

ietf_line.sml (IETF_Line) This has more functions for
parsing HTTP headers. It uses
the lexer to split a header line
into tokens according the the
HTTP specification.

ietf_part.sml (IETF_Part) This defines the type for the
tokens returned by the functions
in ietf_line.sml.

ietf_utils.sml (IETF_Utils) This implements a few utility
functions. Currently it only has
base64 encoding and decoding.

config config.grm This is a ML-Yacc grammar for
the server’s configuration file.

config.lex This is a ML-Lex lexer to match
the grammar.
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Layer File (Module) Purpose
config.sml (Config) This implements the

configuration file parsing. It
stores the configuration
parameters as global values.
Some parameters are pushed
down into the common modules
to avoid circular dependencies
(see init_globals ).

config_types.sml
(ConfigTypes)

This defines types for the parse
tree produced by the grammar.

common abort.sml (Abort) This defines a type to represent
abort conditions on connections.

common.sml (Common) This defines common types and
functions that are used all over
the place.

file_io.sml (FileIO) This implements functions that
generally operate on the
contents of files, especially
wrappers around OS.FileSys
functions.

files.sml (Files) This implements functions that
manage file paths and provide
information about files.

finalise.sml (FinaliseFn) This implements a functor to
provides finalisation of values
after garbage collection.

logging.sml (Log) This implement the Logging
Manager.

mutex.sml (Mutex) This implements mutexes for
atomic operations on static
variables.
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Layer File (Module) Purpose
open_mgr.sml This implements the modules of

the Open Manager. This include
the open file counter
(OpenCounter) and the
managers specialised to each
kind of openable object such as
files and processes.

profile.sml (MyProfile) This implements some profiling
utilities.

signals.sml (SignalMgr) This implements signal catchers.
It also catches the pseudo-signal
from the garbage collector. The
signals are distributed to the
rest of the server using
multicasted messages.

singleton.sml (Singleton) This implements a functor that
provides the common pattern of
a singleton concurrent object
that is started on demand.

text.sml (TextFrag) This defines a type for a
fragment of text. Fragments can
be combined cheaply without
copying the text.

tmpfile.sml (TmpFile) This implements the
management of temporary files
including limiting the disk space
used and cleaning up when a
connection closes.

url.sml (URL) This implements a type for
representing URLs.
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The main dependencies between the modules of the top three levels are
shown in Figure 9-1. Only the main interactions are shown, enough to place
the modules into a hierarchy. The modules on the right hand side are those
in the ietf layer. There would be too many connections joining the store and
ietf layers to draw in. I’ve omitted the config layer as it is fairly simple. The
common layer is mostly flat.

Figure 9-1. The Main Dependencies of the Upper Layers.

How to Follow the Code
The following detailed discussions will be organised by layer from the top
down. I’m going to describe the modules in a logical order that roughly traces
the flow of control for a HTTP request through the server. This will also
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mesh with the top-down description of the layers since the functions are
calling from the top down through the layers.

This ordering of the discussions means there will be many forward
references to modules that will be discussed later, especially those in the the
config and common layers. You may want to jump ahead and scan the
modules of the common layer first. Especially have a look at the TextFrag
and Log modules in the section called The Common Layer.

Throughout the code I’ve used some common abbreviations for module
names.

structure Cfg = Config
structure Hdr = HTTPHeader
structure Req = HTTPMsg
structure S = Socket
structure SS = Substring
structure Status = HTTPStatus
structure TF = TextFrag
structure U = ResponseUtils

The Commonmodule is always opened for direct access.

Building the Server
Each directory contains a sources.cm CM file to control the compilation of
the server. Here is the CM file for the main directory. (See the section called
Assembling the Hello World Program in Chapter 2 for more on CMfiles).

group is
/src/smlnj/current/lib/cml.cm
/src/smlnj/current/lib/cml-lib.cm

../common/sources.cm

../config/sources.cm

../server/sources.cm

main.sml
startup.sml
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This CM file includes all other CM files directly or indirectly so you only
need to compile in the main directory to compile all of the program.

Note that all uses of sml-lib (the SML libary) must be replaced with
cml-lib in all .cm files in all directories. You cannot mix sml-lib and
cml-lib in the same program.

To build the entire program just do the following or use the Makefile in the
top directory.

$ cd main
$ sml
Standard ML of New Jersey, Version 110.0.7, ...
- CM.make();
........
write 5,0: 57 big objects (544 pages) @ 0x1064a0
$

The Main Layer
This layer contains the main function, command line parsing and the server
startup code.

The Main Module
This is a conventional main file with command line processing. Here is the
usage function to show the command line options.

fun usage () = (
print "Usage: swerve [options]\n";
print "Options:\n";
print " -f file : (required) specify the server configuration file\n";
print " -h : print this help message\n";
print " -T id : enable test messages according to the id\n";
print " -D level : set the logging level to Debug immediately\n";
()
)
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The configuration file must be provided and it is immediately parsed. Any
errors are written to stdout during the parsing.

The main function starts up CML and jumps to the command line
processing. I have to set up the multicast channels in the signal manager
before the configuration file is parsed. Otherwise the file I/O handling with
finalisation, which depends on the garbage collector signal, will hang when
attaching to the signal.

fun main(arg0, argv) =
let

fun run() =
(

SignalMgr.init(); (* required by OpenMgr *)
process_args argv

)
in

RunCML.doit(run, NONE)
end

val _ = SMLofNJ.exportFn("swerve", main)

After the command line options have been processed comes the run function.

fun run() =
let
in

TraceCML.setUncaughtFn fatal_exception;
(* TraceCML.setTraceFile TraceCML.TraceToErr; *)

StartUp.startup();

(* Make CML run our finish() function at every shutdown. *)
ignore(RunCML.addCleaner("finish", [RunCML.AtShutdown],

fn _ => StartUp.finish()));

Listener.run();
success() (* shouldn’t get here *)

end

The two main-line steps are to run the startup code and then start the
listener. I also arrange for the StartUp.finish function to be run when
CML is shutdown. CML has a system of "cleaner" functions that can be run
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at various points. The AtShutdown point ensures that the cleaner will be
run whether the server exits normally or fails on a fatal exception. The only
way the cleaner won’t run is a crash of the run-time. More information on
cleaners can be found in the CML source code in the file
core-cml/cml-cleanup-sig.sml .

The run function never returns normally. Instead the server is shutdown by
calling the RunCML.shutdown function. This is done through either of the
success or fail functions in the Commonmodule. If there is an exception
out of the run function then it will be caught in the process_args function
which will call fail .

The run function also contains some commented-out debugging code which
uses the TraceCML module. I used this during debugging to trace the
termination of threads. For an example see the HTTP_1_0 module. Uncaught
exceptions in a thread are reported via the fatal_exception function (not
shown here).

The Startup Module
Here is the startup function.

fun startup() =
let
in

MyProfile.start();

if Cfg.haveServerConfig()
then

()
else
(

Log.error ["The server configuration has not been specified."];
raise FatalX

);

(* Give up if there have been errors already. *)
if Log.numErrors() > 0 then raise FatalX else ();
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(* The configuration code checks that all of the files and
directories exist.

*)
setuid();
create_lock();

(* Give up again. *)
if Log.numErrors() > 0 then raise FatalX else ();

()
end

It checks that the configuration has been successfully read. If the
configuration file was not specified or if there were any errors while
processing the configuration then the server will exit with a fatal error. The
FatalX exception is defined in the Commonmodule and caught as explained
above.

Next the startup function sets the user and group ids if configured and
creates the lock and pid files. If there are any more errors from doing this
then it is also a fatal error. The Startup.finish function, called at
shutdown time, removes the lock and pid files. I’ll skip the code for setting
the ids and show the locking functions.

and create_lock() =
let

val Cfg.ServerConfig {var_dir, ...} = Cfg.getServerConfig()
val lock_file = Files.appendFile var_dir "lock"
val pid_file = Files.appendFile var_dir "pid"

in
Log.inform Log.Debug (fn() => TF.L ["Creating lock file ", lock_file]);

if FileIO.exclCreate lock_file
then

let
val strm = TextIO.openOut pid_file
val pid = Posix.ProcEnv.getpid()
val w = Posix.Process.pidToWord pid

in
TextIO.output(strm, SysWord.fmt StringCvt.DEC w);
TextIO.output(strm, "\n");
TextIO.closeOut(strm)

end
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handle x => (Log.logExn x; raise x)
else
(

Log.error ["Another server is already running."];
raise FatalX

)
end
handle _ => raise FatalX

and remove_lock() =
let

val Cfg.ServerConfig {var_dir, ...} = Cfg.getServerConfig()
val lock_file = Files.appendFile var_dir "lock"
val pid_file = Files.appendFile var_dir "pid"

in
FileIO.removeFile pid_file;
FileIO.removeFile lock_file

end

Here is the FileIO.exclCreate function.

fun exclCreate file =
(

IO.close(FS.createf(file, FS.O_WRONLY, FS.O.excl,
FS.S.flags[FS.S.irusr, FS.S.iwusr]));

true
)
handle

x as OS.SysErr (_, eopt) =>
(if isSome eopt andalso valOf eopt = Posix.Error.exist

then
false (* failed to exclusively create *)

else
(Log.logExnArg file x; raise x) (* failed with error *)

)

| x => (Log.logExnArg file x; raise x)

I’ve settled for creating a lock file with the Posix.FileSys.createf
function using the excl flag. In UNIX terms this means using the open
system call with the O_CREAT, O_WRONLYand O_EXCLflags and mode 0600.
This will work fine as long as the directory containing the lock file is not
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mounted via NFS. I’ve made it a requirement in the server configuration
that this be so.

I can check for the EEXIST errno code by catching the OS.SysErr exception.
It just so happens that the OS.syserror type it contains is the same as the
Posix.Error.syserror type and the Posix.Error module contains
example values for each error code.

Any other error while creating the lock file will be logged and propagated as
an exception.

Once the lock file is created I can write the process’ pid into a file
straightforwardly. The only tricky bit is tracking down the right type
conversion functions. The SML basis documentation doesn’t make it explicit
that the Posix.ProcEnv.pid type is the same as the Posix.Process.pid
type.

The Server Layer
This layer contains code for managing the sockets and running the HTTP
protocol over a client connection.

The Listener Module
As explained in the section called The Architecture of the Server in Chapter 8
each socket is handled by a separate thread. The listener thread waits for a
new connection and then spawns a thread for the new connection.

The listener thread counts the connection threads and refuses new
connections when the configured limit is reached. There are two ways to
implement this. In both cases the central issue is how the listener thread
discovers when a connection has terminated. The straightforward approach
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is to wait on a join event for each connection thread together with an accept
event for a new connection. The code would be something like this.

fun server threads =
let

fun join thread =
let

fun keep t = not(CML.sameTid(t, thread))
fun remove() = List.filter keep threads

in
CML.wrap(CML.joinEvt thread, remove)

end

val ac_evt = CML.wrap(Socket.acceptEvt listener, new_connection threads)
val join_evts = map join threads

val new_threads = CML.select (ac_evt::join_evts)
in

server new_threads
end

This is a server loop for a listener. The state is the list of connection threads.
Here the join function associates each connection thread with a remove
function that removes the thread from the list. At the same time it waits for
an accept event on the listening socket. (The acceptEvt function is a CML
extension of the Socket module).

My concern with this implementation is the overhead if the number of
connections is large. If I dream of my server one day running a site with
hundreds of connections then I’m not keen on all this processing over long
lists of threads. All I really need to do is count the connection threads. So I
have a connection thread send a message to the listener thread when it
terminates. Here is the body of the listener thread which runs as the main
thread of the server.

and serve listener max_clients conn_timeout =
let

val lchan: ListenMsg CML.chan = CML.channel()

fun loop num_connects =
let

(* If we have too many then we will refuse the new
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connection. We require each connection thread to tell
us when it dies.

We won’t log the connection refusals to avoid the log
overflowing on a DOS attack.

*)
fun new_connect (conn, conn_addr) =
(

if (isSome max_clients) andalso
num_connects >= (valOf max_clients)

then
(

Socket.close conn;
num_connects

)
else
(

FileIO.setCloseExec(Socket.pollDesc conn);

CML.spawn(MyProfile.timeIt "Listener connection"
(connection lchan conn conn_addr conn_timeout));

num_connects+1
)

)
handle x =>

(
(Socket.close conn) handle _ => ();
Log.logExn x;
num_connects

)

fun msg ConnDied = num_connects - 1

val new_num = CML.select[
CML.wrap(S.acceptEvt listener, new_connect),
CML.wrap(CML.recvEvt lchan, msg)
]

in
loop new_num

end
in

loop 0
end
handle x =>

(
Socket.close listener;
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Log.logExn x;
raise FatalX

)

The arguments max_clients and conn_timeout are configuration
parameters and listener is the socket to listen on. The configuration
parameters are integer option values from the Config.ServerConfig type.
(See the run function below).

The loop function implements a state machine with the number of
connections as the state. The action happens at the call to CML.select . This
waits for either a new connection on the listener socket or a message over
the manager channel. The result from the event dispatch is a new state
value, the new number of connections.

When a new connection arrives it is accepted and the socket and client’s IP
address are passed to the new_connect function. If a maximum number of
clients is configured and the limit is exceeded then the connection is
immediately closed. There is no change to the number of connections in this
case. I could send back a HTTP status saying "503 Service Unavailable" but
it is legal to just close the connection. If I have a connection limit then I’m
worried about the load on the server and I won’t want to waste more time
telling the client to go away nicely.

If the connection is accepted then I spawn a thread to run the connection.
The socket is marked as close-on-exec so that CGI child processes don’t
inherit it.

If there is an exception at this stage then I log it and close the channel. I’m
careful here to not let another exception break the server loop.

If a ConnDied message comes in from a connection thread then this just
decrements the number of connections.

Here is the run function which is called from main. It creates the listener
socket and calls the above serve function.

fun run() =
let
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val ServerConfig {
conn_timeout: int option,
max_clients: int option,
listen_host,
listen_port,
...
} = getServerConfig()

(* Build an address for listening.
*)
val listen_addr =

case listen_host of
NONE => INetSock.any listen_port

| SOME host =>
(

(* The configuration is supposed to have validated
the host.

*)
case NetHostDB.getByName host of

NONE => raise InternalError "invalid host"
| SOME entry =>

INetSock.toAddr(NetHostDB.addr entry, listen_port)
)

val listener = INetSock.TCP.socket()
in

(* Doing these fixes the type of the socket as passive. *)
Socket.Ctl.setREUSEADDR(listener, true);
Socket.bind(listener, listen_addr);
Socket.listen(listener, 9);
FileIO.setCloseExec(Socket.pollDesc listener);

serve listener max_clients conn_timeout
end
handle x => (Log.logExn x; raise FatalX)

The server’s configuration provides a port to listen on and optionally an IP
address to bind the port to. This could be "localhost" for private use but it
could be the address of a particular interface on a server. The getByName
function is the equivalent of the C gethostbyname() function. The
INetSock.toAddr function constructs the address for an internet socket.
This address value is equivalent to the C sockaddr_in struct. The
remainder of the steps are conventional for setting up a listener socket.
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It’s worth looking again at how the type of the listener socket is fixed by
these function calls (see the section called The Specific Socket Types in
Chapter 4). The INetSock.TCP.socket function involves these types in the
INetSock structure. (I’ve added parentheses in stream_sock to show the
precedence).

...
type ’a sock = (inet, ’a) Socket.sock
type ’a stream_sock = (’a Socket.stream) sock
...
structure TCP : sig

val socket : unit -> ’a stream_sock
...

end

Substituting these type equations gives the intermediate type for the socket
as

(INetSock.inet, ’a Socket.stream) Socket.sock

In this type ’a is a place holder for the passive/active mode. The type of the
listen function will constrain this variable to be Socket.passive giving
the final type for a listening socket.

(INetSock.inet, Socket.passive Socket.stream) Socket.sock

This is the only type that the Socket.accept function will accept. So the
type system ensures that you don’t forget to call the listen function and
similarly you can’t accidentally accept on a connected socket.

Finally here is the code that controls the connection.

and connection lchan sock sock_addr conn_timeout () =
let

fun run() =
let

val conn = MyProfile.timeIt "Listener setupConn"
Connect.setupConn{

socket = sock,
sock_addr = sock_addr,
timeout = conn_timeout
}
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in
MyProfile.timeIt "Listener talk"

HTTP_1_0.talk conn;

MyProfile.timeIt "Listener close"
Connect.close conn;

Log.testInform G.TestConnect Log.Debug
(fn()=>TF.S "Connection closed");

MyProfile.timeIt "Listener release"
TmpFile.releasePort(Connect.getPort conn);

Log.testInform G.TestConnect Log.Debug
(fn()=>TF.S "TmpFiles released")

end

in
Log.inform Log.Info (fn()=>TF.C [TF.S "New connection from ",

format_addr sock_addr]);

MyProfile.timeIt "Listener run"
run();

Log.inform Log.Info (fn()=>TF.C [TF.S "End of connection from ",
format_addr sock_addr]);

MyProfile.timeIt "Listener died"
CML.send(lchan, ConnDied)

end
handle x =>

let
(* See also Connect.getPort *)
val (_, port) = INetSock.fromAddr sock_addr

in
(

Socket.close sock;
TmpFile.releasePort port

) handle _ => (); (* being paranoid *)
Log.logExn x;
CML.send(lchan, ConnDied)

end

Most of the bulk of the code is for handling contingencies. (The timeIt calls
are there for performance testing). Essentially it runs the talk function in
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the HTTP protocol module and then closes the connection. The
Connect.setupConn function wraps up the socket details into a connection
value. It also starts a time-out for the connection if the server is configured
for this. This time-out applies to the entire interval from the acceptance of
the connection through to the closing including the running of any CGI
scripts. An overview of the time-out handling can be found in the section
called Time-outs in Chapter 8.

The TmpFile.releasePort function deletes any temporary files that have
been created for the connection. They would typically contain posted HTTP
entities for CGI scripts to read. The cleanup must be carefully repeated if
any exception is caught. No exceptions can be allowed to get around the
connection thread sending the ConnDied message or else the listener thread
would slowly leak connection capacity.

The Connect Module
This module contains functions for I/O over a connection socket while
looking out for a time-out condition.

The header of a HTTP request is line-oriented but there is no defined
line-length limit. Even if there was, a robust server must be able to cope
with arbitrarily long lines without a "buffer overflow" or filling memory. So
I’ve decided on a line-length limit of 10000 which should be enough for
header lines. Characters beyond the limit are discarded.

Since lines are usually terminated with a CR-LF sequence, custom
line-reading code is required. This requires a buffer to accumulate chunks of
characters from the socket until a complete line is received. See the
readLine function for the code for the line splitting. In the rest of this
section I’ll only describe the lower-level details.

Here is the type for a connection.

datatype Conn = Conn of {
socket: Socket.active INetSock.stream_sock,

311



Chapter 9. The Swerve Detailed Design

port: int,
addr: NetHostDB.in_addr,

is_open: bool ref,
rdbuf: string ref,
rdlen: int ref, (* number of chars left *)
rdoff: int ref, (* offset to next avail char *)

(* This transmits abort messages to all receivers. *)
abort: Abort.Abort
}

The rdbuf field is a string buffer that is updated in place. The rdlen and
rdoff fields point to a range of characters in the buffer that have not be
processed yet. The abort field propagates a time-out condition to any party
interested in the connection. Here is the function to create a connection
value.

fun setupConn {socket, sock_addr, timeout} =
let

(* Apache has special linger handling but SO_LINGER works
on Linux.

*)
val _ = S.Ctl.setLINGER(socket, SOME(Time.fromSeconds 2))

val (addr, port) = INetSock.fromAddr sock_addr

val abort =
case timeout of

NONE => Abort.never()
| SOME t => Abort.create t

in
Conn {

socket = socket,
port = port,
addr = addr,
is_open = ref true,
rdbuf = ref "",
rdlen = ref 0,
rdoff = ref 0,
abort = abort
}

end
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The LINGER option makes a close of the socket wait until the socket has
finished sending all of the response back to the client (or until the 2 second
time-out I’ve specified is reached). The alternative is that the close returns
immediately and the socket drains in the background. But in this case
during this draining it would not be counted against the server’s connection
limit. You could imagine a busy server accumulating an unlimited number of
lingering sockets if they weren’t counted.

The Abort.create function creates an abort object for the given time-out
value. If no time-out is required then Abort.never creates a similar object
that never times-out but can still be forced into the time-out state. If the
connection is broken a time-out is forced so the server only has to test for the
one condition.

The I/O functions raise the Timeout exception if they detect an attempt to
read or write after a time-out. Here is the fill_buf function which is the
core of the reading code. The various reading functions call fill_buf to get
the next chunk of characters from the socket.

and fill_buf (Conn {socket, rdbuf, rdlen, rdoff, abort, ...}) =
let

fun takeVec v =
let

val s = Byte.bytesToString v
in

rdbuf := s;
rdlen := size s;
rdoff := 0

end
in

CML.select [
CML.wrap(Abort.evt abort, (fn() => raise Timeout)),
CML.wrap(S.recvVecEvt(socket, 1024), takeVec)
]

end

It waits for a chunk of up to 1024 characters from the socket or until a
time-out. The chunk is a vector of bytes which I convert to a string and place
into the buffer. The Byte.bytesToString and Byte.stringToBytes
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functions are actually internally just type casts between a vector of bytes
and a vector of characters. They don’t have any run-time cost.

The opposite is the write function to send a string to a socket.

and write (conn as Conn {socket, is_open, ...}) msg =
(

if !is_open
then
let

val bytes = Byte.stringToBytes msg
val len = size msg

(* n is the number of bytes written so far. *)
fun loop n =
(

if aborted conn
then

raise Timeout
else
let

(* val _ = toErr(concat["Connect.write sendVec n=",
Int.toString n, " len=",
Int.toString len, "\n"]) *)

val buf = {buf=bytes, i=n, sz=NONE}
val sent = n + (S.sendVec(socket, buf))

in
if sent >= len
then

()
else

loop sent
end

)
in

loop 0
end
else

()
)

Remember from the section called Time-outs in Chapter 8 that after a
time-out some of the request processing may linger until the garbage
collector cleans it up. The time-out will quickly force the socket to be closed
via the Timeout exception being propagated into the HTTP_1_0 module.
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But the connection object may linger for some time and there may be further
attempts to write to the connection. So all I/O functions check that the socket
is still open and there hasn’t been an abort condition before proceeding.

When sending to the socket there is the risk of a partial write. I need a loop
to keep sending until all of the string is sent. The sendVec function makes it
easy to send a message in chunks using the buf record type. A time-out is
checked before each attempt.

The HTTP_1_0 Module
This module runs the HTTP version 1.0 protocol. This consists of reading in
and parsing a request from the connection socket and writing back the
response. It exports the one function talk .

fun talk conn =
let

val req = MyProfile.timeIt "HTTP_1_0 get" get_request conn
in

if G.testing G.TestShowRequest
then

(Req.dumpRequest req)
else

();

MyProfile.timeIt "HTTP_1_0 to_store" (fn()=>to_store conn req) ()
end
handle Bad status => send_status conn status

This just gets the request and sends it to the resource store. The store is
expected to send a response back at some later time. If there is an error
while reading the request the Bad exception will be raised and it will contain
a status that can be sent back to the client. Usually this is just the "400 Bad
Request" or "500 Server Fail" status.

Here is the get_request function. It reads the parts of a request in a
straight-forward manner and builds the Request value.

and get_request conn : Req.Request =
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let
val (method, url, protocol) = get_request_line conn
val headers = get_all_headers conn
val entity = get_entity headers conn

in
Log.testInform G.TestShowRequest Log.Debug

(fn()=>TF.S "got a request");

Req.Request {
method = method,
url = url,
protocol= protocol,
headers = headers,
entity = entity,

port = Connect.getPort conn,
client = Connect.getAddress conn,

rvar = Sy.iVar(),
abort = Connect.getAbort conn
}

end

I won’t show the get_request_line function as it is just a simple bit of
string splitting. The get_all_headers function is just a wrapper for the
readAllHeaders function of the HTTP_Header module (see the section
called The HTTPHeader Module). The get_entity function is more
interesting.

and get_entity headers conn : Entity.Entity =
let

val Config.ServerConfig {max_req_size, ...} = Config.getServerConfig()
val chunk_size = 8192

fun read_file len =
let

val _ = Log.testInform G.TestShowRequest Log.Debug
(fn()=>TF.L ["HTTP reading into file len=",

Int.toString len])

val (tmp_file, writer) = create_body_file conn len
val strm = BinIOWriter.get writer

fun loop 0 = ()
| loop n =
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(
case Connect.read conn chunk_size of

NONE => Log.log Log.Warn (TF.S "short body")
| SOME (s, _) =>
(

BinIO.output(strm, Byte.stringToBytes s);
loop (n-(size s))

)
)

in
loop len;
BinIOWriter.closeIt writer;
Entity.tmpProducer tmp_file

end
handle x => (Log.logExn x; raise Bad Status.ServerFail)

fun read_mem len =
let

val _ = Log.testInform G.TestShowRequest Log.Debug
(fn()=>TF.L ["HTTP reading into mem len=",

Int.toString len])

val (frag, _) = Connect.readAll conn len
in

Entity.textProducer frag
end
handle x => (Log.logExn x; raise Bad Status.ServerFail)

(* ReqTooLarge is v1.1 only but it’s too good to avoid. *)
fun check_req_limit len =
(

case max_req_size of
NONE => ()

| SOME m => if len > m then
raise Bad Status.ReqTooLarge else ()

)

val einfo = Hdr.toEntityInfo headers
val Entity.Info {length, ...} = einfo

in
case length of

NONE => Entity.None

| SOME n =>
let
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val () = check_req_limit n

val body =
if n > body_limit
then

read_file n
else

read_mem n
in

Entity.Entity {
info = einfo,
body = body
}

end
end

All of the entity body is read in. First the headers are studied to get those
relevant to the entity, in particular its length. If the length is 10000
(body_limit ) bytes or less then I copy it into a string in memory.
Everything from the socket is read in and passed to the textProducer
function. This creates an entity with a producer function (see the section
called Entities, Producers and Consumers in Chapter 8) which can deliver
the content of the string.

If the file is larger than 10000 bytes then I copy it to a temporary file.
Temporary files go into the directory specified by the TmpDir configuration
parameter (see the section called The Server Parameters in Chapter 8). The
file name includes the port number so that it is easy to clean up all
temporary files associated with a connection. The create_body_file
function (below) will create and open the temporary file. A loop transfers the
entity to the file in chunks. It reads only exactly the number of bytes
expected from the Length header. An entity is created with a producer that
can deliver from a temporary file.

Here is the create_body_file function. It will block until there is enough
disk space and file descriptors for the write to proceed. See the section called
The Open File Manager for more details on this. The blocking may be
aborted by a time-out condition.

and create_body_file conn len :(TmpFile.TmpFile * BinIOWriter.Holder)=
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let
val Config.ServerConfig {tmp_dir, ...} = Config.getServerConfig()
val port = Connect.getPort conn
val abort = Connect.getAbort conn

in
case TmpFile.newBodyFile abort tmp_dir len port of

(* errors have already been logged *)
NONE => raise Bad Status.ServerFail

| SOME tmp =>
(tmp, valOf(BinIOWriter.openIt abort (TmpFile.getName tmp)))

handle x => raise Bad Status.ServerFail
end

Once the request is read it is send off to the resource store.

and to_store conn req =
let

val Req.Request {rvar, abort, ...} = req
in

Log.testInform G.TestStoreProto Log.Debug
(fn()=>TF.S "HTTP: sending to the store");

Store.deliver req;

(* Get a response or do nothing if there is an abort condition.
*)
CML.select[

CML.wrap(Abort.evt abort, fn () => ()),

CML.wrap(Sy.iGetEvt rvar,
MyProfile.timeIt "HTTP_1_0 response"

(handle_response conn req))
]

end

The to_store function delivers it to the store and then blocks waiting for a
response. The store processes multiple requests concurrently so it must send
the response over the reply channel when it is ready. If a response is received
it goes to handle_response . If there is a time-out before the response
comes back then nothing is done and to_store returns immediately to the
talk function which returns to the connection handler with nothing written
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to the socket. (Note that I haven’t implemented Redirect requests from CGI
scripts yet.)

A normal response is handled by this function.

and handle_response conn req response : unit =
let

val Req.Request {method, abort, ...} = req
val Req.Response {status, headers, entity} = response

in
Log.testInform G.TestShowResponse Log.Debug

(fn()=>TF.S "HTTP Protocol got a response");

(
send_status conn status;
send_headers conn headers;

MyProfile.timeIt "HTTP_1_0 stream_entity"
(fn() => stream_entity abort conn entity

(method = Req.HEAD)
(Status.needsBody status))

()
)
handle

Connect.Timeout => (Abort.force abort)
| x => (Log.logExn x; Abort.force abort)

end

It just delivers the parts of the response to the connection: the status,
headers and entity. Since there is writing to the connection there may be a
Timeout exception (see the section called The Connect Module). I force the
abort condition on any exception to make sure that it is broadcast to all
interested parties.

Sending the status and headers of the response is straight-forward. Sending
the entity is more interesting. As explained in the section called The
Connection Protocol in Chapter 8 the entity is streamed out using a pair of
producer and consumer. Here is the stream_entity function.

and stream_entity abort conn entity head_method needs_body =
let

val csmr: Entity.Consumer = CML.channel()
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fun receiver() =
(

case CML.recv csmr of
Entity.XferInfo info => (send_info info; receiver())

| Entity.XferBytes bytes => (send_bytes bytes; receiver())
| Entity.XferDone => ()
| Entity.XferAbort => ()

)

(* Send the entity headers. *)
and send_info info =
let

val hdrs = from_entity_info info
in

send_headers conn hdrs;
end_headers conn

end

and send_bytes bytes =
(

if head_method
then

()
else

Connect.write conn (Byte.bytesToString bytes)
)

in
case entity of

Entity.None =>
(

if needs_body (* see RFC1945 7.2 *)
then

Connect.write conn "Content-Length: 0\r\n"
else

();
end_headers conn

)

| _ =>
let

val pthread = Entity.startProducer abort entity csmr
(* val _ = TraceCML.watch("producer", pthread) *)

in
(* Don’t skip the join. The producer must be allowed to

clean up a CGI process nicely.

321



Chapter 9. The Swerve Detailed Design

*)
receiver() handle x => Log.logExn x;
CML.sync(CML.joinEvt pthread) (* wait for producer to stop *)

end
end

The receiver function behaves as a consumer receiving the entity transfer
protocol over the csmr channel. Down the bottom of the function is the call
to Entity.startProducer , for non-empty entities. This spawns a new
thread to run the producer function. The receiver runs in the thread of the
HTTP protocol code which is the same thread as manages the connection.

The head_method flag indicates that the request used the HEAD method
therefore the body of the entity must be suppressed. It is necessary to run
the transfer protocol to the end so that the producer, which may be a CGI
script, can terminate properly. The needs_body flag indicates that the
status code that is being returned requires an entity body. This is true for all
informational statuses (in the 1xx range) and also "204 No Content" and
"304 Not Modified". So if the entity happens not to have a body I have to
insert an empty one.

The Store Layer
This layer implements the resource store with all of the handlers. I describe
the modules in roughly logical order.

The Store Module
This is the front door to the resource store. It exports one function for the
HTTP protocol module to deliver a request.

and deliver req =
let

val Req.Request {url, ...} = req
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val URL.HTTP_URL {path, ...} = url

val msg = Node.HTTPRequest {
request = req,
segs = Cfg.URLPathToList path
}

in
Node.send (get_root()) msg

end

The request is packaged along with an abstraction of the list of segments in
the path of the URL. This segment list is used for routing the message
through the store. Then the message is sent on to the root node.

A node is implemented by a backbone thread as described in the section
called Resource Store Nodes in Chapter 8. Here is the type definition.

datatype Node = Node of {
name: string,
in_mbox: NodeMsg Mailbox.mbox
}

The input to the node is a mailbox which has unlimited buffering. This
prevents a slow resource node from congesting the tree above it. I am relying
on the server’s connection limit to prevent these mailboxes from filling with
a huge number of messages if a resource becomes congested. Each node also
has a name which is the same as the last segment of the path that leads to
the node. Message routing is done by comparing the segments in the
message with the names of the nodes.

The root node is stored as a singleton object. The resource tree is built on
demand by the build_node_tree function when the first request arrives.

and build_node_tree() : Node.Node =
let

fun add_paths (c as Cfg.NodeConfig {path, ...}) = (path, c)

val all_configs = Cfg.getNodeConfigs()
val with_paths = map add_paths all_configs
val root = build_level [] (Node.initOptions false) with_paths

in
root
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end

The build_node_tree function is just a wrapper around the build_level
function which recurses to build all of the levels of the tree.

and build_level path options config_pairs : Node.Node =
let

val () = Log.testInform Globals.TestStoreBuild Log.Debug
(fn() => TF.L ["Installing resource ",

Cfg.listToString path]);

type Pair = (string list * Cfg.NodeConfig)

val table: Pair list STRT.hash_table = STRT.mkTable(101, NotFound)

fun add (remainder, config) =
(

case remainder of
[] => ()

| (h::t) =>
(

case STRT.find table h of
NONE => STRT.insert table (h, [(t, config)])

| SOME lst => STRT.insert table (h, (t, config)::lst)
)

)

(* If there is no config for this node then we fake a node
that always rejects an attempt to access it.

There may not be a config if this level is an intermediate segment
of a config path. E.g. node /cgi/env {...}

*)
val self_config =

case Cfg.findNodeConfig path of
NONE => U.builtinConfig path "reject"

| SOME c => c

(* Compute the option flags for this node.
*)
val self_options =

let
val Cfg.NodeConfig {options = formula, ...} = self_config

in
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Node.performFormula options formula
end

fun build (name, pairs) =
let

val prefix = path @ [name]
in

build_level prefix self_options pairs
end

val () = app add config_pairs;
val items: (string * Pair list) list = STRT.listItemsi table
val children = map build items

val the_node =
NodeFactory.create {

config = self_config,
children = children,
options = self_options
}

in
getOpt(the_node, make_rejecter path)

end

The path argument is the path down to the node being built. The options
argument is a set of node options derived from the options in the server
configuration file. The inheritance of options between nodes is performed
during this building process.

The config_pairs argument is a list of node configurations for all nodes
that will be in the sub-tree below the node being built. The path from each
configuration has been separated out into a pair with the configuration. The
path is in the form of a list of strings and is relative to the node being built.
So for example for a node with path /a/b/c at the initial call to
build_level , the pair will be (["a", "b", "c"], config) .

The algorithm is to sort the node configurations according to the first part of
their paths and group them according to this part. For example for the paths
/a/b/c , /a/d and /e I want these groups:

"a" -> [ (["b", "c"], config1), (["d"], config2) ]
"e" -> [ ([], config3) ]
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This tells me that there will be two child nodes named "a" and "e". The "a"
node will in turn have children with sub-paths of b/c and d. The "e" node
will have no children. I’ve implemented the grouping using a hash table. It
maps from the leading part to a list of those pairs that share the path. The
add function inserts each configuration pair into the table. The listItemsi
function extracts all of the entries from the table in the form of pairs of key
and value where the key is the leading part and the value is the list of pairs.
These are the groups. For each group I build a child node by recursing into
build_level .

Once I have the child nodes I can build the node in question by calling the
node factory (see the section called The Node Factory). The configuration for
the node, in self_config , is looked up from the path being built. This
checks that the path corresponds to a real node. For example if the server’s
configuration only contains the paths /a and /a/b/c then there is no node
that corresponds to the path /a/b and it won’t have a configuration. In this
case a dummy node is built for the path /a/b that just rejects all requests to
it. The builtinConfig function creates a dummy configuration for the
rejecting node.

and make_rejecter path =
let

val node =
NodeFactory.create {

config = U.builtinConfig path "reject",
children = [],
options = Node.initOptions false
}

in
case node of

NONE => ( (* something wrong if we can’t do this *)
Log.fatal ["Cannot create a rejecter node."];
Common.fail()
)

| SOME n => n
end
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If the factory fails to create the node and returns NONE then I try again to
make a node with the dummy rejecting configuration. If this fails then the
server is not able to make any kind of node and it gives up with a fatal error.

The Node Factory
The NodeFactory module encapsulates the creating of different kinds of
resource nodes. The factory function is described by the following type from
the Node module.

type NodeCreator = {
config: Config.NodeConfig, (* URL path that reaches this node. *)
children: Node list, (* child nodes *)
options: Options
} ->
Node option

It creates a node given its configuration and its children (so the tree of nodes
is built from the bottom up). The options are flags that are derived from the
node configuration (see the section called The Node Parameters in Chapter
8). The caller is responsible for performing the inheritance of options from
parent nodes, for example see the store building in the section called The
Store Module).

datatype Options = Options of {
exec_cgi: bool,
follow_sym: bool,
with_subdirs: bool
}

It is in the NodeFactory module that the different kinds of nodes are
assembled.

structure DirNode = GenericNodeFn(
structure Handler = DirNodeHandler)

structure CgiNode = GenericNodeFn(
structure Handler = CgiNodeHandler)
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structure SimpleBuiltinNode = GenericNodeFn(
structure Handler = SimpleBuiltinHandler)

Each kind is assembled from the generic node functor, which implements the
backbone thread, and the handler which implements the handler thread.
This allows the backbone thread to be specialised to the needs of the handler
(see the section called The Generic Node).

Here is the create function of the factory.

fun create {config, children, options} =
let

val Cfg.NodeConfig {path, kind, ...} = config

val () = Log.testInform Globals.TestStoreBuild Log.Debug
(fn() => TF.L ["Creating node ", Cfg.listToString path]);

(* This name is used for locating children from path segments.
See GenericNodeFn.forward_child.

*)
val node_name = if null path then "/" else List.last path

in
case kind of

Cfg.NodeIsDir {path} =>
DirNode.create {

name = node_name,
arg = path,
config = config,
options = options,
factory = create,
children = children
}

| Cfg.NodeIsBuiltin {name} =>
SimpleBuiltinNode.create {

name = node_name,
arg = name,
config = config,
options = options,
factory = create,
children = children
}

| Cfg.NodeIsScript {path} =>
CgiNode.create {
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name = node_name,
arg = path,
config = config,
options = options,
factory = create,
children = children
}

end

What is note-worthy here is that the factory is itself passed down to the
create functions for each kind of node. This gets around a problem of circular
dependencies between modules. The directory node handler needs to be able
to create nodes on demand for the sub-directories that it encounters. So it
wants to call the factory. But the factory must be able to call the create
function for the directory node. My solution to this is to pass the factory’s
create function down to the directory node handler so that it can call it
back (call up).

The Generic Node
The GenericNodeFn generic node functor exports a create function to
create a store node. Each kind of node takes its own type of extra arguments
when creating a node. For example the CGI node needs the path to the CGI
script. This means that the type of the create function varies with the kind of
handler. This tells me to use a functor and specialise it with the handler.

functor GenericNodeFn(
structure Handler: NODE_HANDLER
): GENERIC_NODE =

struct

Here is the signature that a handler module must export. The comments say
it all.

signature NODE_HANDLER =
sig

(* A value of this type is passed to the create function for the
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handler.
*)
type CreateArg

(* Create the thread for the handler. Optionally a new
node configuration can be returned to update the original
configuration. All security-related initialisation must be
done in here so that the master node will be blocked until
it is ready.

The caller should be prepared to handle exceptions from here if
the creation fails.

*)
val init: CreateArg -> Node.HndMbox * (Config.SwerveConfig option)

(* This tests if the handler will take the last segment
of the URL path. For example a directory node wants
the last segment as a file name.

*)
val canTakeLast: Config.NodeConfig -> bool

(* This tests if the handler will take all of the
rest of the URL path if there are no child nodes.

*)
val canTakeRest: Config.NodeConfig -> bool

end

Communication between the backbone and handler threads is done through
a mailbox, which has unlimited buffering of messages. This ensures that a
slow handler can’t cause congestion by having messages back-up into the
tree of backbone threads. The mailbox is created by the handler thread and
returned to the backbone thread from the init function. Here are the types
for a message to a handler and the reply. The protocol is described in more
detail below.

datatype HndMsg = HndReq of {
factory: NodeCreator,
config: Config.NodeConfig,
options: Options,
request: HTTPMsg.Request,
segs: string list, (* remaining path segments *)

330



Chapter 9. The Swerve Detailed Design

rchan: HndReply CML.chan
}

and HndReply =
HndResponse of HndMsg * HTTPMsg.Response

| HndSprout of HndMsg * Node

Directory nodes can have extra configuration parameters supplied in a
.swerve file in the directory (see the section called The Node Parameters in
Chapter 8). Typically these are authorisation parameters. If the init
function for a directory node returns a SwerveConfig record then the
generic code will incorporate it into its node information.

Here is the generic create function. (The "H" structure is an abbreviation
for the Handler argument to the functor).

fun create {name, arg, config, factory, options, children} =
let

val Cfg.NodeConfig {auth, ...} = config

val in_mbox = M.mailbox()
val node = Node {name = name, in_mbox = in_mbox}

val (h_mbox, h_config_opt) = H.init arg

(* Update the options and authorisation from the node
handler.

*)
val (final_auth, final_options) =

case h_config_opt of
NONE => (auth, options)

| SOME cfg => merge_config cfg auth options

val impl = NodeImpl {
name = name,
in_mbox = in_mbox,
hnd_mbox = h_mbox,
hnd_reply= CML.channel(),
config = config,
auth = final_auth,
options = final_options,
factory = factory
}
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val gstate = GenState {
children = children
}

in
CML.spawn (node_server impl gstate);
SOME node

end
handle x => (Log.logExn x; NONE)

The function produces three results. There is static data about a node in the
NodeImpl record.

datatype NodeImpl = NodeImpl of {
name: string,
in_mbox: NodeMsg M.mbox,
hnd_mbox: HndMbox, (* msgs to the handler *)
hnd_reply: HndReply CML.chan, (* replies from the handler *)
config: Cfg.NodeConfig, (* the original *)
auth: Cfg.NodeAuth,
options: Node.Options,
factory: Node.NodeCreator
}

The options and auth fields may differ from the original configuration if
the contents of a .swerve file was merged in.

The second result is the dynamic state for a node. At the moment this only
contains the list of children for a node. Since directory nodes create
sub-directory nodes on demand the list of children may change.

and GenState = GenState of {
children: Node list
}

The third result is the Node value itself which is the input interface to the
node. The static and dynamic node data are retained by the backbone thread
(running the node_server function). The Node value is returned to the
caller.

The server for the backbone thread is a simple dispatcher. It received
messages from the parent node through its input mailbox and also receives
replies from the handler thread.
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and node_server impl gstate () =
let

val NodeImpl {in_mbox, hnd_reply, ...} = impl

fun loop (state: GenState) =
let

val new_state =
CML.select[

CML.wrap(M.recvEvt in_mbox,
MyProfile.timeIt "GenNode request"

(handle_request impl state)),

CML.wrap(CML.recvEvt hnd_reply, handler_reply impl state)
]

in
loop new_state

end
in

loop gstate
end

Here is the body of the function for handling a request from the parent node.

and handle_request impl gstate in_msg : GenState =
let

val HTTPRequest {request, segs} = in_msg

val NodeImpl {name, config, factory, options,
hnd_mbox, hnd_reply, auth, ...} = impl

... omitted material ...
in

NodeAuth.checkAuth auth request; (* raises Respond on error *)

case segs of
[] => handle_it()

| (key::rest) => forward_child key rest;

gstate
end
handle

Respond resp =>
let

val HTTPRequest {request, ...} = in_msg
in

U.return request resp;
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gstate
end

| x =>
let

val HTTPRequest {request, ...} = in_msg
in

Log.logExn x;
U.return request (U.mkServerFail());
gstate

end

The authorisation is always checked first. If this fails then a Node.Respond
exception will be raised. This contains a HTTP response describing the
failure. The exception handler passes the response back to the HTTP
protocol handler using the ResponseUtils.return utility function.

If the request is authorised then it is time to see if it is destined for this node
or a child node. If the list of remaining segments is empty then the request
has reached its target node. The handle_it function passes the request to
the handler thread.

fun handle_it() =
let

val () = Log.testInform G.TestStoreProto Log.Debug
(fn() => TF.L ["Node ", name, " handles it"])

val msg = HndReq {
factory = factory,
config = config,
options = options,
request = request,
segs = segs,
rchan = hnd_reply
}

in
M.send(hnd_mbox, msg)

end

If the segment list is not empty then it may be destined for a child node. This
is dealt with in the forward_child function.

and forward_child key rest =
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let
val () = Log.testInform G.TestStoreProto Log.Debug

(fn() => TF.L [
"Forwarding to child for key ", key,
", rest=", Cfg.listToString rest])

val GenState {children, ...} = gstate

fun match (Node {name, ...}) = (name = key)
in

case List.find match children of
NONE => no_child key rest

| SOME child => pass_to child request rest
end

and no_child key rest =
let

val () = Log.testInform G.TestStoreProto Log.Debug
(fn() => TF.L [

"No child for key ", key,
", rest=", Cfg.listToString rest])

in
if H.canTakeRest config orelse

(null rest andalso H.canTakeLast config)
then

handle_it()
else

U.return request (U.mkNotFound())
end

If the head of the list matches the name of a child node then the request will
be routed down to the child node along with the tail of the segment list.

If the request doesn’t match a child node then it could be that the handler
wants to trap it anyway. For example if the URL path is "/a/b" and "/a" is a
directory then "b" may be a file in the directory. I don’t create distinct
resource nodes for each file. Instead the directory node handles all of the files
in the directory. Directory handlers trap file names by returning true from
the canTakeLast function. Other kinds of nodes may want to perform their
own intepretation of the trailing part of a path, in which case they will
return true from the canTakeRest function. The directory node also does
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this so that it can follow sub-directories. If neither a child node nor the
handler wants the message then a "404 Not Found" response is generated.

Note carefully that an existing child node takes precedence when routing. A
URL path will only be passed to a handler if there is no child node that could
take it. The directory node handler in the section called The Directory Node
Handler expects this. It may decide to create a new child node to implement
a sub-directory. Subsequent requests for this sub-directory must be routed
through to the child node.

Replies from the handler thread are dealt with in the handler_reply
function.

and handler_reply impl gstate reply : GenState =
let

val NodeImpl {name, config, factory, options, ...} = impl
in

case reply of
HndResponse (h_req, resp) =>

let
val HndReq {request, ...} = h_req

in
U.return request resp;
gstate

end

| HndSprout (h_req, child) =>
let

val HndReq {request, segs, ...} = h_req

val GenState {children} = gstate

val new_gstate = GenState {
children = child::children
}

val rest = if null segs then [] else tl segs
in

pass_to child request rest;
new_gstate

end

end
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A reply from a handler could be either a response to a HTTP request or a
request to sprout a new child node. HTTP responses are shipped off
immediately to the HTTP protocol handler.

The directory node handler creates new child nodes for sub-directories on
demand. These have to be added to the resource node tree. The HndSprout
reply from the handler tells the backbone thread to add the child to the list
of children for the node. The original HTTP request is then passed along to
the new child node. Passing a HTTP request to a child node is just a matter
of re-packaging.

and pass_to node req rest : unit =
let

val new_msg = HTTPRequest {
request = req,
segs = rest
}

in
Node.send node new_msg

end

The Directory Node Handler
This implements resources that map to regular files in directories. If the
WithSubDirs option is enabled it effectively mounts a directory tree onto
the URL resource tree.

The story starts with some types.

datatype State = State of {
dir: string (* the directory path *)
}

type CreateArg = string (* the directory path *)

(* We can take the rest in order to try to create a chain of
child directories.

*)
fun canTakeRest _ = true
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fun canTakeLast _ = true

I’ve included the directory’s disk path into a state type although it is really
static. It avoids having a separate type and value being passed through the
rest of the code. The CreateArg type is required by the module interface. It
is the type for the disk path argument to the create function used by the
node factory (in the section called The Node Factory). The canTakeRest and
canTakeLast functions always return true to catch all URL paths that
reach the node as explained in the section called The Generic Node.

The handler is initialised with the init function.

fun init dir_path =
let

val file = Files.appendFile dir_path ".swerve"

val opt_config =
if Files.exists file
then

Cfg.processNodeFile file
else

NONE

val state = State {dir = dir_path}
val mbox = M.mailbox()

in
CML.spawn (server mbox state);
(mbox, opt_config)

end

This reads the .swerve file in the directory, if it exists. Then it starts the
handler thread. The .swerve configuration and a mailbox for the thread are
returned to the backbone thread. The thread runs a trivial server function
that dispatches incoming messages to the handle_request function. Here
is the body of the function.

and handle_request
(msg as HndReq {factory, config, options, request, segs, rchan})
state =

let
val Cfg.NodeConfig {path = node_path, ...} = config
val Req.Request {url, abort, ...} = request
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val URL.HTTP_URL {path = url_path, ...} = url

... omitted material ...
(* If we are not at the end of a path then we can only

try to sprout a child directory.
*)
and do_segs [] = index_dir()
| do_segs [file] = do_file false file
| do_segs (file::rest) = do_file true file

in
do_segs segs;
state

end

The segs argument in the message is the list of trailing segments for the
URL path. For example if the URL path is "/a/b/c" and the node implements
the path "/a" then the segment list will be ["b", "c"]. So if the segment list is
empty I have the case of a URL path that leads to the directory with no file
name. An index of the directory will be generated by the index_dir
function. The index could be either the index.html file if it exists or a
listing of the files in the directory. Indexing is described below.

If the segment list contains one element then it is probably the name of a file
in the directory although it could be the name of a sub-directory. If there is
more than one element then the first must definitely be the name of a
directory. The do_file function handles these cases.

fun do_file dir_only file =
let

val State {dir, ...} = state
val Options {follow_sym, with_subdirs, ...} = options

val file_path = Files.appendFile dir file

val () = Log.testInform Globals.TestStoreProto Log.Debug
(fn() => TF.L ["Looking at file ", file_path]);

in
if not follow_sym andalso Files.isSym file_path
then

bad()
else
if not dir_only andalso Files.isReg file_path
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then
(

if Files.readableReg file_path
then

reply_response(send_file file_path request)
else

reply_response(U.mkForbidden())
)
else
if Files.isDir file_path
then
(

if with_subdirs andalso Files.accessibleDir file_path
then

let
val new_node_path = node_path @ [file]

in
case sprout_child factory new_node_path file_path of

NONE => reply_response(U.mkServerFail())
| SOME child => reply_sprout child

end
else

reply_response(U.mkForbidden())
)
else

bad()
end

Whether the file argument is a regular file or a directory, its path on disk is
built from the disk path of the node’s directory. Then we check what kind of
file it really is. Symbolic links are followed by default when opening files so,
if they are not to be, I must filter them out first. If the path is a regular file
and this is reasonable, because there are no more URL segments after the
file name and the server has permission to read the file, then I can send it to
the client.

If the file is a directory and the WithSubDirs configuration option has been
specified then the sub-directory must be automatically made into a new node
in the resource store. The new node is created by the sprout_child
function and then sent back to the backbone thread to be inserted into the
resource tree. Then the backbone thread will route the original request to
the new node and the story starts all over again.
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and sprout_child factory node_path dir_path : Node.Node option =
let

val options = Options {
exec_cgi = false,
follow_sym = false,
with_subdirs = true
}

val child_config = Cfg.NodeConfig {
path = node_path,
kind = Cfg.NodeIsDir {path = dir_path},
options = [], (* passed directly to the factory *)
auth = Cfg.NodeNoAuth
}

in
factory {

config = child_config,
children = [],
options = options
}

end

The sprout_child function is a wrapper around a call to the node factory.
The sub-directory doesn’t have an entry in the server configuration
otherwise the node would already exist in the tree and there would be no
sprouting. So I have to synthesise a configuration that describes a directory
node. At the moment I am not doing any inheritance of options in the
synthetic configuration except that the WithSubDirs option must be true all
the way down to get the entire tree under the sub-directory. Although I’ve
specified NodeNoAuth for the authorisation, if the sub-directory has a
.swerve file that specifies some authorisation control it will be merged in
when the new node is created (see the create function in the section called
The Generic Node).

Here is the send_file function that returns a regular file to the client.

and send_file file_path req : Req.Response =
let

val () = Log.testInform Globals.TestStoreProto Log.Debug
(fn() => TF.L ["dir_node sends file ", file_path]);

fun file_response() =
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let
val entity = Entity.Entity {

info = Entity.emptyInfo,
body = Entity.fileProducer file_path
}

in
Req.Response {

status = Status.OK,
headers = [],
entity = entity
}

end

in
if Files.readableReg file_path
then

file_response()
else

U.mkForbidden()
end

All it has to do is create an entity that represents the file on disk and wrap it
into a HTTP response record. The Entity.fileProducer function makes a
producer that can deliver from disk. The producer will fill in the file length
and last modification date so I don’t have to do it here.

The indexing of directories is controlled by the index_dir function
mentioned above.

and index_dir() =
let

val State {dir, ...} = state
val Options {follow_sym, ...} = options
val Cfg.ServerConfig {dir_index, ...} = Cfg.getServerConfig()

val file_path = Files.appendFile dir dir_index

val () = Log.testInform Globals.TestStoreProto Log.Debug
(fn() => TF.L ["Indexing directory ", file_path]);

in
if not follow_sym andalso Files.isSym file_path
then

bad()
else
if Files.isReg file_path
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then
reply_response(send_file file_path request)

else
reply_response(fancy_index abort url dir)

end

The function looks to see if there is an index.html file in the directory. (The
name index.html actually comes from the server configuration). If the file
exists and is readable then it is returned. If the file does not exist then the
contents of the directory is listed and formatted as HTML and returned
(again if accessible). The result is similar to Netscape’s directory indexing.
This is done by the fancy_index function.

and fancy_index abort url dir : Req.Response =
let

val URL.HTTP_URL {host, port, userinfo, path = url_path, ...} = url
val URL.URLPath {segs, absolute} = url_path

fun build entries =
let

val text = TF.C [header(), translate entries, trailer()]
in

U.mkHTML Status.OK text
end

... omitted material ...
in

Log.testInform Globals.TestStoreProto Log.Debug (fn() => TF.L [
"dir_node accessibleDir of ", dir,
" is ", Bool.toString(Files.accessibleDir dir)
]);

if Files.accessibleDir dir
then
(

(build(FileIO.listDir abort dir))
handle _ => U.mkServerFail()

)
else

U.mkForbidden()
end
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The listing of the directory requires reading from a file descriptor so it must
go through the Open File Manager and may be aborted by a time-out. The
building of the HTML is a messy bit of text formatting using the TextFrag
module. The code assumes that there is a "/icons" URL path in the server to
fetch icons from. I’ll omit the gory details.

The CGI Node Handler
This module handles requests that run CGI scripts. It conforms fairly closely
to the CGI version 1.1 specification. The differences are

• The REMOTE_HOST environment variable is not set. This would require
a DNS reverse lookup even if the CGI script is not interested. Instead only
REMOTE_ADDR is supplied. This actually conforms to the specification
but may be unusual.

• The authorisation type will not be accurate unless it is set directly on the
CGI node by the node’s configuration. Authorisation inherited from higher
nodes is not reported. This is a design problem.

• The command line is never set. It would only be used for ISINDEX
queries which the server does not support.

The CGI interface has been tested with some simple Perl scripts using the
CGI.pm module.

The initialisation of the node is similar to that of the directory node in the
section called The Directory Node Handler so I won’t repeat it here. Instead
the story starts with the handle_request function.

and handle_request
(msg as HndReq {config, rchan, request, segs, ...})
script =

let
val env = build_environ config request (length segs)
val resp = run_script script env request

in
CML.send(rchan, HndResponse(msg, resp))
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end

This is simple enough: build the set of environment variables; run the script
and send back the response. The build_environ function is large and I’ll
describe it in pieces.

and build_environ config request num_left =
let

val Cfg.NodeConfig {auth, ...} = config

val Req.Request {url, headers, method, protocol, client, ...}
= request

val URL.HTTP_URL {path, query, fragment, ...} = url
val URL.URLPath {segs, ...} = path

val script_path = URL.URLPath {
segs = List.take(segs, length segs - num_left),
absolute = false
}

val trail_path = URL.URLPath {
segs = List.drop(segs, length segs - num_left),
absolute = false
}

(* Copy across approved variables.
*)
fun copy n =
(

case OS.Process.getEnv n of
NONE => NONE

| SOME v => SOME(concat[n, "=", v])
)

val copied = List.mapPartial copy
["PATH", "HOSTNAME", "LANG", "LOGNAME",

"HOME", "LD_LIBRARY_PATH", "SHELL"]

This first section unpacks the arguments and copies variables out of the
server’s environment. Only those variables that are likely to be useful to a
script and that are reasonably safe are copied. The mapPartial function
suppresses variables that aren’t set in the server’s environment. The result
is a list of strings of the form "name=value".
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This next section adds in the unconditional CGI variables. (The ^ is the infix
string concatenation operator).

val Cfg.ServerConfig {server_name, listen_port, ...} =
Cfg.getServerConfig()

val basics = [
"SERVER_NAME=" ^ server_name,
"SERVER_PORT=" ^ (Int.toString listen_port),
"SERVER_SOFTWARE=" ^ Globals.cgi_version,
"REQUEST_METHOD=" ^ (Req.methodToString method),
"SERVER_PROTOCOL=" ^ protocol,
"GATEWAY_INTERFACE=CGI/1.1",
"PATH_INFO=" ^ (URL.pathToString trail_path),
"SCRIPT_NAME=" ^ (URL.pathToString script_path),

(* We don’t set REMOTE_HOST, the script can find
it if it wants.

*)
"REMOTE_ADDR=" ^ (NetHostDB.toString client)
]

The next section builds the optional variables. Each value is a list containing
a single "name=value" string. The list is empty if the variable is not being
set. The variables can then be easily merged by concatenating the lists.

val auth_env : string list =
case auth of

Cfg.NodeNoAuth => []
| Cfg.NodeBasic _ => ["AUTH_TYPE=Basic"]

val user_env : string list =
case Hdr.getAuth headers of

NONE => []
| SOME (Hdr.AuthBasic (opt_id, pwd)) =>
(

case opt_id of
NONE => []

| SOME id => ["REMOTE_USER=" ^ id]
)

val ctype_env : string list =
case Hdr.getContentType headers of

NONE => []
| SOME mtype => ["CONTENT_TYPE=" ^
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(TF.toString TF.UseLf (E.formatType mtype))]

val clen_env : string list =
case Hdr.getContentLength headers of

NONE => []
| SOME len => ["CONTENT_LENGTH=" ^ (Int.toString len)]

val query_env : string list =
case query of

NONE => []
| SOME q => ["QUERY_STRING=" ^ q]

Next all request headers that haven’t been covered must be translated to
CGI variables. The translation converts a header name such as "User-Agent"
to the variable name HTTP_USER_AGENT. The header has to be
reconstituted as a string to get the name. Finally the headers are joined
together to build the complete list.

fun hdr_copy (Hdr.HdrAuthorization _) = NONE
| hdr_copy (Hdr.HdrConLen _) = NONE
| hdr_copy (Hdr.HdrConType _) = NONE
| hdr_copy (Hdr.HdrChallenge _) = NONE
| hdr_copy (Hdr.HdrBad _) = NONE
| hdr_copy header =
let

(* Find the initial colon, split off any white space after it.
Header names become uppercase with hyphens mapped to
underscores.

*)
val text = SS.all(TF.toString TF.UseLf (Hdr.formatHeader header))
val (left, right) = SS.splitl (isntVal #":") text

fun cvt #"-" = "_"
| cvt c = str(Char.toUpper c)

val ename = SS.translate cvt left
val evalue = SS.dropl Char.isSpace (SS.triml 1 right)

in
SOME(concat["HTTP_", ename, "=", SS.string evalue])

end

val other_headers = List.mapPartial hdr_copy headers

val final_headers = List.concat[copied, basics, auth_env,
user_env, ctype_env, clen_env, query_env,
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other_headers]

Here is the run_script function.

and run_script script env request : Req.Response =
let

(* The Aborted exception can be raised in here. *)
val Req.Request {abort, ...} = request

fun talk holder =
let

val (proc, _) = ExecReader.get holder
val () = send_entity abort proc request
val headers = get_headers abort proc script

(* We don’t pass these to the client.
The last four are handled by the Entity Info.

*)
fun select (Hdr.HdrStatus _) = false
| select (Hdr.HdrConType _) = false
| select (Hdr.HdrConLen _) = false
| select (Hdr.HdrConEnc _) = false
| select (Hdr.HdrLastModified _) = false
| select _ = true

val status =
case Hdr.getStatus headers of

NONE => Status.OK
| SOME s => s

(* This includes error responses from the script.
*)
fun normal_response() =
let

val () = Log.testInform Globals.TestCGIProto Log.Debug
(fn()=>TF.S "CGI normal_response")

val entity = Entity.Entity {
info = Hdr.toEntityInfo headers,
body = Entity.procProducer holder
}

in
Req.Response {
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status = status,
headers = List.filter select headers,
entity = entity
}

end
in

normal_response()
end
handle _ =>

(
kill (#1(ExecReader.get holder));
U.mkServerFail() (* REVISIT - should be ReqTimeout *)

)

in
(* The holder will be closed in procProducer after the response

body has been delivered. If there is an error then the
holder will eventually be finalised.

*)
case ExecReader.openIt abort (script, [], env) of

NONE => U.mkServerFail() (* error already reported *)
| SOME holder => talk holder

end

The forking and execing of the script is handled by the ExecReader module
which is described in the section called The Open File Manager. This module
waits for enough file descriptors before proceeding. It provides for
finalisation to kill and reap the child if there is a time-out.

If the script is successfully started then the talk function sends any entity
body to the stdin of the script. Then it reads the headers that come back
from the script on stdout and constructs a normal response. (The
normal_response function is a left-over of more complex code that I
simplified). The status and entity-specific headers are separated out. An
Entity value is constructed to represent the body that may or may not be
still waiting on stdout to be read. The body won’t be read until the response
is being written to the socket of the connection, as described in the section
called The Connection Protocol in Chapter 8. The get_headers function can
raise the local Aborted exception if it detects an abort condition. I make an
attempt to ensure that the child process is killed quickly rather than wait for
finalisation.
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Here is the send_entity function.

and send_entity abort proc request =
let

val Req.Request {entity, ...} = request
val (_, ostream) = Unix.streamsOf proc

val consumer = CML.channel()

val () = Log.testInform Globals.TestCGIProto Log.Debug
(fn()=>TF.S "CGI send_entity")

fun send_it() =
(

case CML.recv consumer of
E.XferInfo _ => send_it()

| E.XferBytes vec =>
(

TextIO.output(ostream, Byte.bytesToString vec);
send_it()

)

| E.XferDone => done()
| E.XferAbort => done()

)

and done() =
(

TextIO.closeOut ostream
)

in
E.startProducer abort entity consumer;
CML.spawn send_it;
()

end

The sending has to be done in a separate thread because there is no
guarantee that the CGI script will even read its stdin let alone consume it
all strictly before attempting to write to stdout . If the script doesn’t read its
stdin then the sending thread will block indefinitely and will eventually be
caught by the garbage collector after the child process has been reaped and
all files closed. To send the entity the thread acts as a consumer of the
transfer procotol.
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Here is the get_headers function.

and get_headers abort proc script =
let

val (istream, _) = Unix.streamsOf proc
val () = Log.testInform Globals.TestCGIProto Log.Debug

(fn()=>TF.S "CGI get_headers")

(* This must match Connect.readLine.
We strip the terminating \r\n.

*)
fun readLine() =
(

if Abort.aborted abort
then

NONE
else
(

case TextIO.inputLine istream of
"" => NONE

| line =>
let

val l = size line
in

if l > 1 andalso String.sub(line, l-2) = #"\r"
then

SOME(String.substring(line, 0, l-2))
else
if l > 0 andalso String.sub(line, l-1) = #"\n"
then

SOME(String.substring(line, 0, l-1))
else

SOME line
end

)
)

(* Log any bad headers and discard them. *)
fun check [] out = out
| check ((Hdr.HdrBad h)::rest) out =
(

Log.error ["CGI ", script, " returned bad header: ", h];
check rest out

)
| check (h::rest) out = check rest (h::out)
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(* Try to read some headers. This will return early on
an abort.

*)
val headers = Hdr.readAllHeaders readLine

in
if Abort.aborted abort
then

raise Aborted
else

check headers []
end

This is mainly a wrapper around the common Hdr.readAllHeaders
function. The messy bit is emulating the handling of CR-LF that the
Connect module does. If a time-out happens while the script is running then
it is most likely to be detected while waiting for the headers. I check for an
abort condition before each header line and after the headers have been
read. The Aborted exception breaks out of the run_script function.

The Builtin Node Handler
This module implements some simple built-in kinds of nodes. They are used
for testing. If you were to use the server as a front-end for an SML
application then the interface between the server and the application would
be modeled on this module.

The code in this module is fairly generic. It consists of a framework for
running a function that creates the response to a request. This is shown
here.

and handle_request
(msg as HndReq {config, rchan, request, ...})
=

let
val Cfg.NodeConfig {kind, ...} = config

fun reply response =
(
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CML.send(rchan, HndResponse(msg, response))
)

in
case kind of

Cfg.NodeIsBuiltin {name} =>
(

case get_maker name of
NONE => reply (U.mkServerFail())

| SOME f => reply (f request)
)

| _ => raise InternalError "SimpleBuiltin,handleRequest"
end

and get_maker name =
(

case name of
"hw" => SOME (fn _ => U.mkHelloWorld())

| "reject" => SOME (fn _ => U.mkNotFound())
| "sleep" => SOME sleep
| _ => NONE

)

The get_maker function selects a response-building function depending on
the kind of the built-in node as specified in the node’s configuration. The
hello world and reject nodes return fixed responses. The sleep node delays
for a number of seconds specified by the value in the query. If you configure a
node as follows:

Node /sleep
{

# Pass a timeout as a query e.g. /sleep?3
BuiltIn = "sleep";

}

then the URL http://.../sleep?3 will return a response 3 seconds later.
Here is the sleep function.

and sleep request =
let

val Req.Request {url, abort, ...} = request
val URL.HTTP_URL {query, ...} = url
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val timeout =
case query of

NONE => 1
| SOME q => getOpt(Int.fromString q, 1)

val t_evt = CML.timeOutEvt(Time.fromSeconds(Int.toLarge timeout))
in

CML.select[
CML.wrap(t_evt, fn _ => ()),
CML.wrap(Abort.evt abort, fn _ => ())
];

U.mkHTML Status.OK (TF.L [
"<html><body><p>",
"Slept for ", Int.toString timeout, " seconds",
"</body></html>"])

end

First it gets the time-out from the query string or defaults to 1 second if it
isn’t available or readable. Then it uses a CML.select to wait for the
desired time-out. This must also abort on a request time-out. The mkHTML
function builds a simple response containing some HTML. See the section
called The ResponseUtils Module. Note that this handler is single-threaded.
So if two requests come in at the same time the second one will start its
delay after the first one has finished. The handler should process these
requests concurrently but I only use this function for testing at the moment
so I’m not bothered.

The ResponseUtils Module
This module contains a collection of miscellaneous functions, mainly for
creating HTTP responses. Here’s a simple one that returns plain text. It uses
a textProducer to deliver the entity body out of a string in memory. TF is
the TextFrag module described in the section called The Text Module.

and mkHelloWorld() : Req.Response =
let

val info = Entity.Info {
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etype = SOME (Entity.simpleType "text" "plain"),
encoding = NONE,
length = NONE,
last_mod = NONE
}

val entity = Entity.Entity {
info = info,
body = Entity.textProducer(TF.C

[TF.S "hello world", TF.Nl])
}

in
Req.Response {

status = Status.OK,
headers = [],
entity = entity
}

end

This next one has a little help to generate HTML.

and mkForbidden() =
(

mkHTML Status.Forbidden
(lines_to_text [

"<html><body>",
"<em>Access Denied</em>",
"</body></html>"
])

)

and lines_to_text lst =
(

TF.C(map (fn l => TF.C [TF.S l, TF.Nl]) lst)
)

and mkHTML status frag =
let

val info = Entity.Info {
etype = SOME (Entity.simpleType "text" "html"),
encoding = NONE,
length = NONE,
last_mod = NONE

355



Chapter 9. The Swerve Detailed Design

}

val entity = Entity.Entity {
info = info,
body = Entity.textProducer frag
}

in
Req.Response {

status = status,
headers = [],
entity = entity
}

end

The NodeAuth Module
This module checks the client’s credentials. It only uses the Basic
authorisation type. The implementation is quite simple-minded. The user
name and password are looked up each time by reading through the
authorisation files. This could be done more efficiently by caching the file
contents in memory. But then I would have to have some control mechanism
to reload the cache if I change a password or add a user.

The interface is a single function.

fun checkAuth auth (req: Req.Request) =
let
in

case auth of
Cfg.NodeNoAuth => () (* pass *)

| Cfg.NodeBasic au => validate_basic au req
end

If the authorisation fails this function constructs a response and returns it
via the Node.Respond exception. This is caught in the GenericNodeFn
functor. See the section called The Generic Node.

Here is the top-level of the Basic validation.

and validate_basic
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(auth as {realm, user_file, group_file, users, groups})
req
: unit =

let
val () = Log.testInform G.TestAuth Log.Debug (fn() => TF.L [

"Basic auth for realm ", realm])

val Req.Request {headers, abort, ...} = req

(* Generate a challenge response to prompt for a password. *)
fun challenge() =
let

val () = Log.testInform G.TestAuth Log.Debug (fn() => TF.L [
"Returning challenge for realm ", realm])

val resp = Req.Response {
status = Status.UnAuth,
headers = [Hdr.HdrChallenge(Hdr.ChallBasic realm)],
entity = Entity.None
}

in
raise Node.Respond resp

end

fun reject() =
let

val resp = Req.Response {
status = Status.UnAuth,
headers = [],
entity = Entity.None
}

in
raise Node.Respond resp

end

in
case Hdr.getAuth headers of

NONE => challenge()

| SOME (Hdr.AuthBasic (opt_id, pwd)) =>
(

case opt_id of
NONE => reject()

| SOME id => validate_user abort auth reject id pwd
)
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end

To get to this function the node must require (Basic) authorisation. So if the
request does not have one then the response will contain a challenge header
which will make a browser prompt the user for a password and resend the
request. If the request has some authorisation then it must have both a user
name and password and these are validated against the files. Since reading
files takes time there must be a check for an aborted connection. The abort
value is passed down through the validation code. The reject function
raises a "401 UnAuthorized" reponse and is passed along to the validation
routines.

Here is the top-level of the user validation.

and validate_user
abort
{realm, user_file, group_file, users, groups}
rejecter id pwd
: unit =

let
val () = Log.testInform G.TestAuth Log.Debug (fn() => TF.L [

"Validate user=", id, " for realm=", realm])

val all_users = add_group_users abort users group_file groups
in

if List.exists (isVal id) all_users
andalso validate_pwd abort user_file id pwd

then
()

else
rejecter()

end

The group names in the authorisation record are expanded by
add_group_users to a list of user names and added to the user name list.
Then if the user name is in this list the password must be checked. (The
isVal function is in the Common module). I’ll skip the add_group_users
function which is a messy bit of file reading and go on to the validate_pwd
function. This is a simpler bit of file reading.

and validate_pwd abort user_file id pwd : bool =
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let
val () = Log.testInform G.TestAuth Log.Debug (fn() => TF.L [

"Validate pwd for user=", id, " pwd=", pwd])

fun loop lnum strm =
let

val line = TextIO.inputLine strm
in

if line = ""
then

false (* eof so failed *)
else

if check_line line lnum
then

true
else

loop (lnum+1) strm
end

and check_line line lnum =
let

val (left, right) =
SS.splitl (isntVal #":") (SS.all line)

fun clean s = SS.dropr Char.isSpace (SS.dropl Char.isSpace s)

(* Trim off leading and trailing white space from the names. *)
val user = SS.string(clean left)
val password = SS.string(clean(SS.triml 1 right))

val () = Log.testInform G.TestAuth Log.Debug (fn() => TF.L [
"Found user=", user, " pwd=", password])

in
user = id andalso password = pwd

end
in

FileIO.withTextIn abort user_file false (loop 1)
end

The FileIO.withTextIn function takes care of opening and closing the file
including waiting for a file descriptor to be available. It passes a text stream
to the loop function which reads the lines. The false value is a default in
case the file could not be read. A line is of the form "user: pwd" with white
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space allowed around the user name and the password. The clean function
trims off this white space.

The IETF Layer
This layer implements modules that deal with the kinds of data that make
up internet protocol messages (as described in the RFCs). For the purposes
of HTTP, this includes headers, status messages and mime-encoded entities.

The Entity Module
This module implements the Entity type for all HTML pages, images etc.
that are transferred over HTTP. It also includes a simple bit of MIME type
handling. The functions for transferring entities around the server are in
here. This includes the transfer protocol (the XferProto type) and the
producer/consumer system. See the section called Entities, Producers and
Consumers in Chapter 8 for an overview.

First here is the MIME type interface.

datatype MType =
MType of {

mtype: string,
msubtype: string,
mparams: (string * string) list
}

| MTypeUnknown

val formatType: MType -> TextFrag.Text

(* This creates a simple type e.g. text/plain.
*)
val simpleType: string -> string -> MType

(* This works out a Mime type for a file. It only
looks at the file name.
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*)
val getMimeType: string -> MType

This just declares the type and provides some utility functions. The
declaration is needed here for the entity info. The parsing of MIME types in
headers is taken care of in the HTTPHeader module (see the section called
The HTTPHeader Module). The formatType function converts the type
back to the text format suitable for a header. The getMimeType function
maps the file name extension to a MIME type using the types file specified
by the TypesConfig configuration parameter (see the section called The
Server Parameters in Chapter 8). Most of the work for this is done in the
Config module in the section called The Config Module - Interface. These
functions are simple enough to not need further explanation here.

The Encoding type is treated similarly to MType above. The parsing of
encodings is done in the HTTPHeader module. The type is declared here for
the entity info. The formatEncoding encoding function converts an
encoding value back to the text format for a header. I won’t discuss if further
here. The server never takes notice of the encoding. Entities passing through
are never decoded. When the server has to generate an entity such as a
message or a fancy index for a directory they are never encoded. I don’t
recognise compression in disk files.

As explained in the section called Entities, Producers and Consumers in
Chapter 8 the interface for an entity is abstract. The data is delivered by a
producer function. The entity body itself is represented by a function that
can create a producer function.

datatype Entity =
Entity of {

info: Info,
body: MKProducer
}

| None

and Info = Info of {
etype: MType option,
encoding: Encoding option,
length: int option,
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last_mod: Date.date option
}

The Info type contains information about the entity. This corresponds to the
Content-Type , Content-Encoding , Content-Length and
Last-Modified HTTP headers. Not all of the Info fields are used by all of
the different kinds of producer function. For example if the entity is stored in
a disk file then the length and last modification date are taken from the file
instead of the Info. The MIME type is derived from the file name extension
but the encoding is ignored. I should either look at the extension or try to
detect the type of the file from the first few bytes. But ignoring the encoding
will be enough for this simple server at the moment.

Here are the interface declarations for the transfer protocol and
producer/consumer system. The protocol is described in more detail in the
section called Entities, Producers and Consumers in Chapter 8.

(* A producer sends messages of this type to its consumer. *)
and XferProto =

XferInfo of Info (* send this first *)
| XferBytes of Word8Vector.vector (* then lots of these *)
| XferDone (* then one of these *)
| XferAbort (* or else one of these *)

withtype Consumer = XferProto CML.chan
and MKProducer = Abort.Abort -> Info -> Consumer -> CML.thread_id

(* This creates a producer for an entity. *)
val startProducer: Abort.Abort -> Entity -> Consumer -> CML.thread_id

val textProducer: TextFrag.Text -> MKProducer
val tmpProducer: TmpFile.TmpFile -> MKProducer
val fileProducer: string -> MKProducer

(* Beware that process producers are one-shot.
The holder is closed after the entity has been produced.

*)
val procProducer: ExecReader.Holder -> MKProducer

To create an Entity value which represents a disk file you would use the
fileProducer function. This returns a MKProducer function which in turn
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can be used to make multiple concurrent producers. Each producer delivers
the contents of the file using the transfer protocol.

The startProducer function starts the delivery process.

and startProducer abort (Entity {info, body}) consumer = body abort info consumer

| startProducer abort None consumer =
(

CML.spawn (fn () => CML.send(consumer, XferDone))
)

All it does is call the producer function. It handles the case of a non-existent
entity by starting a producer thread that just sends the XferDone message.

Here is the fileProducer function.

and fileProducer name abort old_info consumer =
let

fun producer() =
let

(* All of the info fields are regenerated from the
file at the time we send it.

*)
val opt_len = FileIO.fileSize name
val modt = Option.map Date.fromTimeUniv (FileIO.modTime name)

val info = Info {
etype = SOME(getMimeType name),
encoding = NONE,
length = opt_len,
last_mod = modt
}

in
CML.send(consumer, XferInfo info);

case opt_len of (* NONE if can’t access the file *)
NONE => CML.send(consumer, XferDone)

| SOME len => send_file()
end

and send_file() =
let

(* Record the open file so that it can be finalised if
the consumer is aborted e.g. due to a connection timeout.
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*)
fun loop strm =
(

if Abort.aborted abort
then

CML.send(consumer, XferAbort)
else
let

val chunk = BinIO.inputN(strm, file_chunk)
in

if Word8Vector.length chunk = 0
then

CML.send(consumer, XferDone)
else
(

CML.send(consumer, XferBytes chunk);
loop strm

)
end

)
in

case BinIOReader.openIt abort name of
NONE => ()

| SOME h => (loop (BinIOReader.get h); BinIOReader.closeIt h)
end
handle x => (Log.logExn x; ())

in
CML.spawn producer

end

I am using currying here. The function call (fileProducer "foo.html")
returns a function that takes abort, Info and consumer arguments and starts
the producer thread and returns its id. This returned function has the type
MkProducer . When all of the arguments to the fileProducer function are
eventually supplied it spawns a thread which runs its producer function.
New entity info is derived from the file each time that a producer thread is
spawned. This allows changes to the file length and modification time to be
noticed. There is no safety check for a file changing as it is being delivered. If
this happens then the Content-Length header won’t match the amount of
data actually sent.
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If the file is of non-zero length then its contents are sent by the send_file
function. This does some binary I/O to read the file in chunks and deliver
them in XferBytes messages. The BinIOReader module takes care of
waiting for free file descriptors and closing the file on an abort. (See the
section called The Open File Manager). I also need to check for the abort
condition while sending the file. The CML library has no function like
"inputNEvt " which returns an event for when data is ready from a
BinIO.instream . I have to poll for the abort condition before each file read.
This is a case where the server may end up trying to send data to an aborted
connection. This will be caught when an attempt is made to write to a closed
connection socket.

The tmpProducer delivers from a temporary file. This is just a particular
case of the fileProducer . The textProducer delivers from a TextFrag
in memory. The length is obtained from the length of the text and the other
Info must be supplied. Each fragment of the text is sent as a separate
XferBytes message.

and textProducer frag abort einfo consumer =
let

val len = TF.length TF.UseCrLf frag

fun producer() =
(

CML.send(consumer, XferInfo(update_length einfo len));
TF.apply TF.UseCrLf send frag;
CML.send(consumer, XferDone)

)

and send str = CML.send(consumer, XferBytes(Byte.stringToBytes str))
in

CML.spawn producer
end

The procProducer function delivers an entity from a pipe that is reading
from a CGI script. This makes it a bit different from the other producers in
that it can only work once. The Info for the entity is obtained from the
headers returned by the CGI script. See the section called The CGI Node
Handler for more details.
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and procProducer (holder: ExecReader.Holder) abort einfo consumer =
let

val opened as (proc, _) = ExecReader.get holder
val (strm, _) = Unix.streamsOf proc

fun producer() =
(

CML.send(consumer, XferInfo einfo);
send_file();
ExecReader.closeIt holder;
()

)

and send_file () =
(

(* See send_file above
PROBLEM: CML timeouts don’t seem to interrupt the inputN
operation.

*)
if Abort.aborted abort
then
(

CML.send(consumer, XferAbort)
)
else
let

val chunk = TextIO.inputN(strm, pipe_chunk)
in

if chunk = ""
then
(

CML.send(consumer, XferDone)
)
else
(

CML.send(consumer, XferBytes(Byte.stringToBytes chunk));
send_file()

)
end
handle x => (Log.logExn x; ())

)
in

CML.spawn producer
end
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The producer function is straight-forward enough: send the info then send
the file then close. Sending the file consists of a loop to read chunks from the
pipe and deliver them in XferBytes messages. As usual I need to check for
an abort condition each time around.

The HTTPHeader Module
The HTTPHeader module handles the parsing of the header lines in
messages. This isn’t rocket science, just a lot of string handling, so I won’t go
through all of the code in detail. I’ll just describe the overall layout.

Here is the type for a header.

datatype Header =
HdrDate of Date.date

| HdrPragma of string

| HdrAuthorization of Authorization
| HdrFrom of string
| HdrIfModified of Date.date
| HdrReferer of string
| HdrUserAgent of string

| HdrConEnc of Entity.Encoding(* content encoding *)
| HdrConLen of int (* content length *)
| HdrConType of Entity.MType (* mime type *)
| HdrLastModified of Date.date

| HdrChallenge of AuthChallenge

(* These can appear in CGI script output. *)
| HdrStatus of HTTPStatus.Status
| HdrLocation of URL.URL

| HdrExt of (string * string) (* extensions *)
| HdrBad of string (* unparsable junk *)

and Authorization =
AuthBasic of (string option * string) (* user id and password *)

and AuthChallenge =
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ChallBasic of string (* the realm *)

The well-known headers are separated out. Anything that isn’t recognised is
thrown into the extension category (HdrExt ) and left as a pair of strings for
the header name and value. The status header is included since it appears in
the CGI protocol. (See the section called The CGI Node Handler). Any header
that cannot be parsed is thrown into the bad category (HdrBad ) for later
error reporting.

Here is the header interface.

val readAllHeaders: (unit -> string option) -> Header list

val parseHeader: string -> Header

val formatHeader: Header -> TextFrag.Text

(* These functions retrieve well-known headers. *)

val getContentLength: Header list -> int option
val getContentType: Header list -> Entity.MType option
val getContentEnc: Header list -> Entity.Encoding option
val getContentMod: Header list -> Date.date option
val getAuth: Header list -> Authorization option
val getStatus: Header list -> HTTPStatus.Status option
val getLocation: Header list -> URL.URL option

(* This extracts the relevant headers to build the entity info
record.

*)
val toEntityInfo: Header list -> Entity.Info

(* This overrides one set of headers with another. *)
val overrideHeaders: Header list -> Header list -> Header list

(* This excludes a set of headers. The excluded set is
demonstrated by sample headers in the first list.

*)
val excludeHeaders: Header list -> Header list -> Header list

The readAllHeaders function reads and parses all of the header section of
a message. It stops after the blank line that ends a header section. The
argument is a function for reading lines as strings from a data source. The
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lines must have any trailing CR-LF trimmed off. The Connect.readLine
function matches this requirement.

The readAllHeaders function uses parseHeader to parse each header.
This function can be called separately. The formatHeader function restores
a header to text form as a TextFrag .

Next come a group of utility functions which fetch particular headers from a
list. The toEntityInfo function extracts those headers relevant to the
contents of an entity and builds an Info value (see the section called The
Entity Module). The override and exclude functions allow merging groups of
headers. They aren’t actually used anymore.

The readAllHeaders function has this general scheme.

fun readAllHeaders readLine : Header list =
let
... omitted material ...

val lines = loop []
val hdr_lines = merge lines [] []
val headers = map parseHeader hdr_lines

in
(* show_lines hdr_lines; *)
headers

end

The loop function reads in all of the header lines into a list. The merge
function merges continuation lines. If a line starts with white space then it is
a continuation of the previous line. The leading white space of the
continuation line is stripped off. Then each line is parsed.

The parseHeader function has more meat in it.

and parseHeader line : Header =
let

val dispatch = [
("DATE", parse_date HdrDate),
("PRAGMA", parse_pragma),
("AUTHORIZATION", parse_auth),
("FROM", parse_from),
("IF-MODIFIED-SINCE", parse_if_modified),
("REFERER", parse_referer),
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("USER-AGENT", parse_useragent),
("CONTENT-ENCODING", parse_cont_encoding),
("CONTENT-LENGTH", parse_cont_length),
("CONTENT-TYPE", parse_cont_type),
("LAST-MODIFIED", parse_date HdrLastModified),
("WWW-AUTHENTICATE", parse_challenge),
("LOCATION", parse_location),
("STATUS", parse_status)
]

(* The value has the leading and trailing white space removed. *)
fun parse sstoken ssvalue =
let

val value = (SS.string(SS.dropl Char.isSpace
(SS.dropr Char.isSpace ssvalue)))

val token = SS.string sstoken
val utoken = upperCase token

in
case List.find (fn (n, _) => n = utoken) dispatch of

NONE => HdrExt (token, value)

| SOME (n, f) => f value
end

(* The common characters are caught early for speed. *)
fun is_token c = Char.isAlphaNum c orelse c = #"-" orelse

Char.contains "!#$%&’*+.^_‘|~" c orelse
(ord c >= 128)

val (name, rest) = SS.splitl is_token (SS.all line)
in

(* Expect a token, colon and more parts. *)
if not (SS.isEmpty name) andalso SS.sub(rest, 0) = #":"
then

parse name (SS.triml 1 rest)
else

HdrBad line
end

Down the bottom I first separate out the header name which is a "token" in
the IETF terminology. Splitting uses the Substring type to avoid copying
parts of strings. The parse function converts the token to upper case and
looks it up in the dispatch table. The dispatch functions are passed the value
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of the header line after the colon with the leading and trailing white space
stripped. These functions must return a Header value, possibly HdrBad .

The date parsing dispatch function is shared by the different headers. The
header’s constructor is passed as an argument to the function. Remember
that a constructor in a datatype is equivalent to a function that constructs
the type. See the parse_date function below.

Some header values consist of multiple tokens that need further parsing.
This is described in more detail in the section called The IETF_Line and
IETF_Part Modules. The result is a list of parts that are described by the
following type in the IETF_Part module. (In the code I abbreviate
IETF_Part to IP and IETF_Line to IETF .).

datatype Part =
Token of string (* including quoted strings *)

| TSpec of char
| TWh of string (* the white space *)
| TBad of char (* invalid character *)
| TEOF

Here is a simple header parsing function for the Pragma header.

and parse_pragma value =
let

val hparts = IETF.split value
in

case strip_ws hparts of
[IP.Token s] =>

(
if field_match s "no-cache"
then

HdrPragma "no-cache"
else

HdrBad value
)

| _ => HdrBad value
end
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It splits the header value into parts and then checks that this results in
exactly one token. The only token that is recognised is no-cache . The
field_match function does case-insensitive matching of two strings.

The most complicated parsing function is for dates. There are three different
date formats that are allowed in date headers. See the section called The
Date Header in Chapter 8 for more details. Here is the top-level of the
function.

and parse_date (constr: Date.date -> Header) value =
let

val hparts = IETF.split value
... omitted material ...
in

(* print "looking at the date parts ";
IETF.dump parts; print "\n"; *)

case strip_ws hparts of
[IP.Token wkday,

IP.TSpec #",",
IP.Token day,
IP.Token month,
IP.Token year,
IP.Token hh,
IP.TSpec #":",
IP.Token mm,
IP.TSpec #":",
IP.Token ss,
IP.Token "GMT"] => build wkday day month year hh mm ss

| [IP.Token wkday,
IP.TSpec #",",
IP.Token dmy, (* hyphen isn’t special *)
IP.Token hh,
IP.TSpec #":",
IP.Token mm,
IP.TSpec #":",
IP.Token ss,
IP.Token "GMT"] =>

(
case String.fields (fn c => c = #"-") dmy of

[day, month, year] =>
build wkday day month ("19"^year) hh mm ss

| _ => HdrBad value
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)

| [IP.Token wkday,
IP.Token month,
IP.Token day,
IP.Token hh,
IP.TSpec #":",
IP.Token mm,
IP.TSpec #":",
IP.Token ss,
IP.Token year] => build wkday day month year hh mm ss

| _ => HdrBad value
end

The date value is split into tokens and then a big case expression matches it
against each of the date formats. The compiler will be able optimise these
cases to efficient code. The second format is trickier since the hyphen
character is not considered a token separator. The day-month-year field
must be split again into fields on the hyphen character. The build function
assembles the field values into a Date.date value. This involves
recognising month and weekday names. I’ll skip describing that here.

The formatHeader function converts each header back to text as fragments.
This avoids all of the copying that would result from concatenating strings.

and formatHeader (HdrDate date) =
(

format_date "Date: " date
)

| formatHeader (HdrPragma pragma) =
(

TF.L ["Pragma: ", IETF.quoteField pragma]
)
... omitted material ...

The quoteField function reintroduces quoting for special characters as
described in the section called HTTP Requests in Chapter 8.

The remaining functions in this module are simple utility functions that
need no further explanation.
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The IETF_Line and IETF_Part Modules
The IETF_Line module contains the code for splitting a string into tokens
and special characters according to the syntax in the section called HTTP
Requests in Chapter 8. The result is a list of parts described by this type in
the IETF_Part module.

datatype Part =
Token of string (* including quoted strings *)

| TSpec of char
| TWh of string (* the white space *)
| TBad of char (* invalid character *)
| TEOF

To help recognise the tokens and special characters I’ve used a lexer
generated by the ML-Lex utility (which is part of the SML/NJ distribution).
ML-Lex is similar to the standard Unix lex utility for the C language. You
provide a specification of regular expressions for the various parts you want
to recognise and it builds a lexer for these expressions. Here is the body of
the specification from the ietf.lex file.

%structure IETFLex
%full

ctl=[\000-\031\127];
ws=[\ \t];
tokn=[!#$%&’*+.0-9A-Z^_‘a-z|~\h-];
str=[^\000-\031\127"];

%%

{ws}+ => (TWh yytext);
{tokn}+ => (Token yytext);
\"{str}*\" => (fix_str yytext);

"(" => (TSpec (String.sub(yytext, 0)));
")" => (TSpec (String.sub(yytext, 0)));
"<" => (TSpec (String.sub(yytext, 0)));
">" => (TSpec (String.sub(yytext, 0)));
"@" => (TSpec (String.sub(yytext, 0)));
"," => (TSpec (String.sub(yytext, 0)));
";" => (TSpec (String.sub(yytext, 0)));
":" => (TSpec (String.sub(yytext, 0)));
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"\\" => (TSpec (String.sub(yytext, 0)));
"\"" => (TSpec (String.sub(yytext, 0)));
"/" => (TSpec (String.sub(yytext, 0)));
"[" => (TSpec (String.sub(yytext, 0)));
"]" => (TSpec (String.sub(yytext, 0)));
"?" => (TSpec (String.sub(yytext, 0)));
"=" => (TSpec (String.sub(yytext, 0)));
"{" => (TSpec (String.sub(yytext, 0)));
"}" => (TSpec (String.sub(yytext, 0)));

. => (TBad (String.sub(yytext, 0)));

The generated SML file will contain a structure named IETFLex . This
contains these declarations (among others).

structure IETFLex=
struct

structure UserDeclarations =
struct

open IETF_Part
type lexresult = Part

fun eof() = TEOF

(* Strip off the surrounding quotes. *)
fun fix_str s = Token(String.substring(s, 1, size s - 2))

end

fun makeLexer yyinput = ...
...

end

The contents of the UserDeclarations structure is copied in from the top
part of the ietf.lex file. The lexresult declaration is required. It gives
the type of the part that is returned by the lexer. The right-hand side of a
regular expression specification must be an expression of this type. As in C
lex, a variable named yytext is available containing the matched string.
The eof function is also required. It will be called at the end of the lexer’s
input.

The makeLexer function returns a lexer function that can be called
successively to get each part. So the lexer function is imperative. The
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yyinput argument to makeLexer is a function that the lexer can call to
fetch chunks of the input string. It takes an integer argument for the
preferred chunk length, which you can ignore if you like. The end of the
input is indicated when yyinput returns the empty string.

Here is the IETF_Line.split function that operates the lexer.

fun split str : IP.Part list =
let

val done = ref false
fun input n = if !done then "" else (done := true; str)

val lexer = IETFLex.makeLexer input

fun read toks =
(

case lexer() of
IP.TEOF => rev toks

| t => read (t::toks)
)

in
read []

end

I pass the string to be split in a single chunk to the lexer. I have to arrange
for the second call to the input function to return an empty string. This
requires a kludge with a state variable. The imperative nature of the lexer
tends to poison like this all code that interacts with it. The read function is
a simple loop that keeps getting parts from the lexer until the end-of-file
part is found. A list of the parts is returned.

Complementing the split function is the join function. This converts a list
of parts back into a string. At the moment this only used by the quoteField
function. (In an earlier version of the server I used the join function in
more places).

and join hparts =
let

fun to_str [] rslt = concat(rev rslt)
| to_str [IP.TWh _] rslt = to_str [] rslt (* trailing ws *)
| to_str ((IP.Token s1)::r) rslt = to_str r ((quote s1)::rslt)
| to_str ((IP.TWh s)::r) rslt = to_str r (s :: rslt)
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| to_str ((IP.TSpec c)::r) rslt = to_str r ((str c) :: rslt)
| to_str ((IP.TBad c)::r) rslt = to_str r rslt
| to_str (IP.TEOF::r) rslt = to_str r rslt

and quote str =
let

(* If there are unsafe characters then right won’t be empty.
*)
val (_, right) = SS.splitl safe (SS.all str)

in
if SS.isEmpty right
then

str
else

strip_dq str
end

and safe c = not (Char.isCntrl c orelse
Char.isSpace c orelse
Char.contains "()<>@,;:\\\"/[]?={}" c)

and strip_dq str =
let

val fields = SS.fields (fn c => c = #"\"") (SS.all str)
in

concat("\"" :: ((map SS.string fields) @ ["\""]))
end

in
to_str hparts []

end

The to_str function is the main loop that converts each part to a string,
building a list of strings. Then this list is concatenated. Trailing white space
is deleted. The text of tokens is quoted if they contain unsafe characters. I
use the Substring.splitl function as a simple way to search for a
character that matches a predicate. If there are any unsafe characters then
the whole token is enclosed in double quotes. Since the HTTP v1.0
specification does not allow double quote characters inside quoted strings I
just delete them, for want of a better solution. There shouldn’t be any of
them inside tokens anyway.
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Now I can implement the quoteField function as just a split followed by a
join.

and quoteField field = join(split field)

The HTTPStatus Module
This module provides a simple abstraction for status codes. The codes are
classified by severity and protocol version. The text description of the code
can be generated.

There’s not much to say about this. Each code is made into an exported
value. The type is abstract.

datatype Severity =
Info | Success | Redirect | ClientError | ServerError

type Status

val OK: Status (* 200 *)
val Created: Status (* 201 *)
val Accepted: Status (* 202 *)
val NoContent: Status (* 204 *)
... omitted material ...
val formatStatus: Status -> string

val severity: Status -> Severity
val code: Status -> int

val isV11: Status -> bool
val same: Status -> Status -> bool

val fromInt: int -> Status

(* This tests if the response needs a body according to the
status code. See section 7.2 of RFC1945.

*)
val needsBody: Status -> bool
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The HTTPMsg Module
This module defines types for the Request and Response types that pass
between the HTTP protocol section and the resource store. For more
information see the section called Requests and Responses in Chapter 8.

The Config Layer
This layer implements modules that parse the server’s configuration files.
This includes the MIME types file. It does not include the authorisation files
for user names and passwords. See the section called The NodeAuth Module
for more information on those.

The configuration file is complex enough that I’ve used an ML-Yacc parser.
The ML-Yacc system is simple enough to use that it can be comfortably used
for small jobs like this. The ConfigTypes module defines the types for the
parse tree for the main configuration file.

Most of the code is in the Config module. I’ll describe that first. Most of it is
just a lot of string handling and checking of parameters for correctness so I’ll
skim lightly over that.

The Config Module - Interface
First here are the types that describe the server’s configuration.

(* This is a simplified form of URLPath with just the parts.
These paths are case-sensitive and so are stored in the
original case.

*)
type NodePath = string list

(* Required parameters are stored as strings with "" for an undefined
value. Optional ones as string option.

*)
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datatype ServerConfig = ServerConfig of {
server_root: string,
config_dir: string,
var_dir: string,
tmp_dir: string,
doc_dir: string,
cgi_dir: string,
mime_file: string,
error_log: string,
dir_index: string,

log_level: Log.Level,

run_user: string option,
run_group: string option,

conn_timeout: int option,
max_clients: int option,
max_tmp_space: int option,
max_req_size: int option,

listen_host: string option,
listen_port: int,
server_name: string
}

The server configuration is described by the ServerConfig type. It is held
in a static variable in the Config module and fetched by the
getServerConfig function. It is just a big record of all of the parameters
that apply to the server as a whole, as described in the section called The
Server Parameters in Chapter 8.

A node configuration is described by the NodeConfig type. See the section
called The Node Parameters in Chapter 8 for more information on these
configuration parameters.

datatype NodeConfig = NodeConfig of {
path: NodePath,
kind: NodeKind,
options: NodeOptionFormula list,
auth: NodeAuth
}

and NodeKind =
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NodeIsDir of {
path: string (* directory path *)
}

| NodeIsBuiltin of {
name: string
}

| NodeIsScript of {
path: string
}

(* This is a subset of NodeConfig for .swerve files. *)
and SwerveConfig = SwerveConfig of {

options: NodeOptionFormula list,
auth: NodeAuth
}

and NodeOptionFormula =
NOFInherit

| NOFAll
| NOFNone
| NOFAdd of NodeOption
| NOFSub of NodeOption

and NodeOption =
NodeExecCGI

| NodeFollowSymLinks
| NodeWithSubDirs

and NodeAuth =
NodeBasic of {

realm: string,
user_file: string, (* path to the user file *)
group_file: string, (* path to the group file *)
users: string list,(* users to allow *)
groups: string list (* groups to allow *)
}

| NodeNoAuth

The options for a node are described by a formula. This neatly describes how
the options of a node can be computed from those of its parent by
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interpreting the formula. (The NodeExecCGI option is a left-over from an
earlier design. It is not used anymore).

The NodeAuth type describes the authorisation parameters in a
straight-forward way. Extra kinds of authorisation can be added to this type.

Each directory that implements a node can have a .swerve file that
provides more parameters, mainly for authorisation. The contents of this file
is described by the SwerveConfig type. Having a separate type allows
parameters unique to this file to be added in the future and besides, the path
and kind parameters are not relevant.

Here are the main functions of the module interface for the configuration
parameters.

val processConfig: string -> unit

val haveServerConfig: unit -> bool

(* This is not defined if the processConfig() has not succeeded. *)
val getServerConfig: unit -> ServerConfig

(* Return a list of all of the node configurations.
*)
val getNodeConfigs: unit -> NodeConfig list

(* This reads a .swerve file and returns the configuration or
NONE if it wasn’t parsable.
The Io exception will be raised if the file cannot be read.

*)
val processNodeFile: string -> SwerveConfig option

(* This returns the node configuration from the main configuration
file if the node path appeared exactly in the file.

*)
val findNodeConfig: NodePath -> NodeConfig option

The main entry point is processConfig which is called from the Main
module as soon as the -f command line option is read. This reads the
configuration files and saves the information in the static variables. If there
are any errors then these are reported on standard error and the server
configuration will not be saved.
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The haveServerConfig function tests that the parsing was successful. If so
then some of the parameters are poked into global variables, for example the
logging file and level. The getServerConfig function can then be called
from anywhere in the server to get the configuration. Since this information
is immutable it can be safely called from any thread.

The node configurations are stored separately as a list in no particular order.
The getNodeConfigs function fetches the list. Alternatively the
findNodeConfig function can be used to get a particular node if its
configuration path is known. But the main use for these configuration
records is to build the resource store tree (see the section called The Store
Module) and this uses the whole list.

The processNodeFile is used to parse a .swerve file. Errors are logged in
the usual way. The result is returned if there was no error. Nothing is saved
in static variables.

The static variables are managed like this.

val cf_server_config: ServerConfig option ref = ref NONE

val cf_nodes: NodeConfig list ref = ref []

fun getServerConfig() = valOf(!cf_server_config)
fun haveServerConfig() = isSome(!cf_server_config)
fun getNodeConfigs() = !cf_nodes

fun getServerRoot() =
let

val ServerConfig{server_root, ...} = getServerConfig()
in

server_root
end

The processConfig function looks like this.

fun processConfig file : unit =
let

(* show the warnings while processing *)
val _ = Log.lowerLevel Log.Warn
val sections = parse_config false file
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in
(* dump_sections sections; *)

(* Ensure that the server node is processed first to
get the server root for the nodes’ files.

*)
process_server_section sections;
process_node_sections sections;

process_mime_file();
init_globals();
()

end
handle _ => (Log.flush(); raise FatalX)

(* This pokes some config parameters into various modules in
common.

*)
and init_globals() =
let

val ServerConfig {error_log, log_level, max_tmp_space, ...} =
getServerConfig()

in
(* Don’t change the error stream until the config has been processed. *)
Log.flush();
Log.setLogFile error_log;
Log.setLevel log_level;

case max_tmp_space of
NONE => ()

| SOME l => TmpFile.setDiskLimit l;

()
end

The log level needs to be lowered to make sure that warnings from the
configuration checking get through. They will appear on standard error. (The
level could have been set higher by a command line option). Only after the
configuration has been successfully read are errors redirected to the log file.
Any exceptions are fatal.
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The next sections describe the use of ML-Yacc and ML-Lex in detail for
parsing the configuration.

The Configuration Grammar
The modules of an ML-Yacc parser are quite complex to describe as they use
multiple functors to assemble the parser from parts. But it’s easy to copy
from an example. For the full details see the ML-Yacc documentation that
comes with the source package (see Appendix C).

The parts of the parser are:

• A lexer generated by ML-Lex. This splits the input file into lexical tokens.

• The parsing tables generated by ML-Yacc. This includes modules that
define the types and values for the lexical tokens. These are used by the
lexer.

• The parsing algorithm which is part of the ML-Yacc library.

There is a lot of superficial similarity with a grammar file for standard Unix
C yacc. One big difference is that it is even more strongly recommended that
the parsing be side-effect free. I’ve seen many people write yacc grammars
with action code that goes updating data structures or printing out error
messages during the parsing operation. This immediately clashes with any
kind of back-tracking such as error recovery. The well-known problems of
putting action code in the middle of a production are an example of this.

I always just use a parser to build a parse tree. I don’t report semantic errors
until a later pass over the tree. The ML-Yacc parser here does the same. The
action code attached to each production is just an expression that builds a
node (or fragment of a node) in the parse tree. The ML-Yacc parser attempts
recovery from syntax errors to continue parsing for as long as possible. This
works best if the action code has no side-effects.
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Here is the top part of the grammar file. It is structured like a the C yacc
grammar file.

open Common
open ConfigTypes

%%

%eop EOF

(* %pos declares the type of positions for terminals.
Each symbol has an associated left and right position. *)

%pos Common.SrcPos
%arg (file): string

%term
KW_SERVER

| KW_NODE

| SYM_SEMICOLON
| SYM_COMMA
| SYM_LBRACE
| SYM_RBRACE
| SYM_EQUALS
| SYM_SWERVE

| TOK_WORD of string
| TOK_STRING of string
| TOK_INT of int

| EOF

%nonterm
start of Section list

| section_list of Section list
| section of Section
| part_list of SectionPart list
| part of SectionPart
| literal_list of Literal list
| literal of Literal

%name Config

%noshift EOF
%pure
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%verbose

%%

It starts off with a header containing any SML declarations you may need
for the rest of the grammar. This is delimited by the %%characters.

Then comes SML type declarations for the terminals and non-terminals.
These must look like an SML datatype declaration. The terminals become
the tokens for the lexer. The non-terminals are type declarations for the
production rules of the grammar. The action code of the rules must be
expressions of these types.

The terminal declarations can carry data. Here for example both a word and
a string carry the text of the word or string. The difference between the two
is that strings are quoted since they may contain special characters and
unquoted words appear in special places in the grammar.

The KW_terminals are keywords. They are reserved words that are
recognised specially by the lexer. They mark the beginning of major syntactic
constructs. Using reserved words helps to eliminate ambiguity in the
grammar. The SYM_terminals are punctuation symbols.

The %eopdirective indicates which terminal marks the end of the input. It
will be the same as the token returned by the eof function in the lexer. It
also needs to be repeated in the %noshift directive.

The %arg directive declares an argument that will be passed into the parser.
I use this to pass in the file name for error messages. The %namedirective
provides a prefix for the names of the parser modules. The %pure directive
declares that all of the action code is side-effect free. If you don’t include this
then the parser will work harder to compensate which will slow it down. The
%verbose directive tells ML-Yacc to dump the grammar rules to a .desc
file. This can be useful for figuring out ambiguity problems but you need to
be fairly familiar with LALR parsers.

I’ve actually combined two grammars together, one for the server
configuration file and one for the .swerve files. They share a lot of syntax.
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Unfortunately ML-Yacc doesn’t support more than one start symbol. I have
to fake it by prepending a special symbol, called SYM_SWERVE, to the
terminals from a .swerve file. The parser driver in the Config module will
push the string "\001\001\001" onto the front of a .swerve file. The lexer
will recognise this string as the SYM_SWERVEsymbol. The parser will then
switch to the swerve grammar.

Before looking at the grammar here are the types for the parse tree.

structure ConfigTypes =
struct

datatype Section =
SectServer of {

parts: SectionPart list,
pos: Common.SrcPos
}

| SectNode of {
path: string,
parts: SectionPart list,
pos: Common.SrcPos
}

(* This is for the contents of a .swerve file *)
| SectSwerve of {

parts: SectionPart list
}

and SectionPart = SectionPart of {
left: string,
right: Literal list,
pos: Common.SrcPos
}

and Literal =
LitIsString of string * Common.SrcPos

| LitIsInt of int * Common.SrcPos
end

The result of parsing will be a list of sections. Each section contains a list of
parts and a part is a "word = value" pair. Every node in the parse tree is
annotated with a source position. This gives the file name, line number and
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column where the characters corresponding to the node starts. Positions are
used in error messages.

Here is the top part of the production section.

start:
section_list (section_list)

| SYM_SWERVE
part_list ([SectSwerve {

parts = part_list
}])

section_list:
section ([section])

| section_list
section (section_list @ [section])

section:
KW_SERVER
SYM_LBRACE
part_list
SYM_RBRACE (SectServer {

parts = part_list,
pos = KW_SERVERleft
})

| KW_NODE
TOK_WORD
SYM_LBRACE
part_list
SYM_RBRACE (SectNode {

path = TOK_WORD,
parts = part_list,
pos = KW_NODEleft
})

The parsing starts at the first non-terminal which I’ve called start . If it’s
parsing a server configuration file then the syntax is a list of sections. For a
.swerve file it is a list of parts.

The action code computes a value for the non-terminal on the left-hand side
of a production. A non-terminal on the right-hand side of a production can be
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used in the action code and it represents the value of the non-terminal. The
notation KW_SERVERleft refers to the source position of the first character
of the terminal KW_SERVER. The notation TOK_WORDrepresents the value
carried by the terminal so it’s a string variable. For more information on all
of this see the ML-Yacc documentation.

Since the start non-terminal has the type (Section list) its action code
must be of this type. So a .swerve file will produce a list containing the
single SectSwerve section. The production for section_list is a standard
pattern for a list of one or more things. It’s a simple bit of recursion. Note
that since ML-Yacc does LALR grammars it must be left-recursion. This
means the recursive call to section_list appears at the beginning of the
second branch of the production. The section production just computes a tree
node with type Section .

Here’s the rest of the grammar. It’s quite straight-forward.

part_list:
part ([part])

| part_list
part (part_list @ [part])

part:
TOK_WORD SYM_EQUALS
literal_list
SYM_SEMICOLON (SectionPart {

left = TOK_WORD,
right = literal_list,
pos = TOK_WORDleft
})

literal_list:
literal ([literal])

| literal_list
literal (literal_list @ [literal])

literal:
TOK_STRING (LitIsString (TOK_STRING, TOK_STRINGleft))
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| TOK_INT (LitIsInt (TOK_INT, TOK_INTleft))
| TOK_WORD (LitIsString (TOK_WORD, TOK_WORDleft))

The Configuration Lexer
The lexer splits the configuration files up into tokens which are words,
strings, symbols and integers. The main difference between words and
strings is that that strings can contain any special character so they must be
quoted. Words are allowed to contain just enough special characters to form
most of the file paths you’re likely to want. The symbols include punctuation
and some reserved words. The layout of the files is free format with any
amount of white space between the tokens.

The lexer is generated using ML-Lex. Starting in the middle of the
config.lex file are some declarations that are required to interface with
the parser.

(* These definitions are required by the parser.
The lexer types are supplied by the grammar.

*)

type pos = Common.SrcPos
type arg = string (* type from %arg below *)

type svalue = Tokens.svalue
type (’a,’b) token = (’a,’b) Tokens.token
type lexresult= (svalue,pos) token

fun eof file = Tokens.EOF(get_pos file 0, get_pos file 0)

%%
%header (functor ConfigLexFun(structure Tokens: Config_TOKENS));

ML-Yacc will generate a structure which defines all of the tokens that are
passed from the lexer to the parser. These are the terminals of the grammar.
The words terminal and token are synonymous. You use %header to declare
the lexer as a functor that takes the structure as an argument, here called
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Tokens . Here is the signature for the structure, from the config.grm.sig
file.

signature Config_TOKENS =
sig
type (’a,’b) token
type svalue
val EOF: ’a * ’a -> (svalue,’a) token
val TOK_INT: (int) * ’a * ’a -> (svalue,’a) token
val TOK_STRING: (string) * ’a * ’a -> (svalue,’a) token
val TOK_WORD: (string) * ’a * ’a -> (svalue,’a) token
val SYM_SWERVE: ’a * ’a -> (svalue,’a) token
val SYM_EQUALS: ’a * ’a -> (svalue,’a) token
val SYM_RBRACE: ’a * ’a -> (svalue,’a) token
val SYM_LBRACE: ’a * ’a -> (svalue,’a) token
val SYM_COMMA: ’a * ’a -> (svalue,’a) token
val SYM_SEMICOLON: ’a * ’a -> (svalue,’a) token
val KW_NODE: ’a * ’a -> (svalue,’a) token
val KW_SERVER: ’a * ’a -> (svalue,’a) token
end

All of the tokens are defined as functions that map from a pair of source
positions and possibly some contained value to the token type. There are
two source positions so that you can point to the first and last characters of
the token in the source file. I just point to the first character and set the
second position to be the same as the first. For example to generate the EOF
token I just call the Tokens.EOF function with some dummy source
positions.

In the signature the ’a type variable represents whatever type you choose
for the source position. The svalue name means "semantic value". It’s
whatever data will be carried along with the tokens. When used with an
ML-Yacc parser it will also include the types for the non-terminals. All you
have to do is ensure that there are definitions for the svalue and token
types in the lexer which are equated to the types supplied in the Tokens
structure. Also you must equate the lexresult type to be the same as the
parser’s token type.

Here is the bottom half of the config.lex file which defines the regular
expressions for the tokens.
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%%
%header (functor ConfigLexFun(structure Tokens: Config_TOKENS));
%full
%arg (file: string);

wrd1=[A-Za-z_/\\$:.%+-];
wrd=[A-Za-z0-9_/\\$:.%+-];
word={wrd1}{wrd}*;
str=([^"\n]|\\\n|\\\"|\\\\);
digit=[0-9];
int=[+-]?{digit}+;

ws=[\ \t\013];
%%

"\n" => (new_line yypos; continue());
{ws}+ => (continue());
#.*\n => (new_line yypos; continue());

{word} => (check_reserved yytext file yypos);

{int} => (fix_integer yytext file yypos);

\"{str}*\" => (fix_str yytext file yypos);

";" => (sym Tokens.SYM_SEMICOLON file yypos);
"," => (sym Tokens.SYM_COMMA file yypos);
"{" => (sym Tokens.SYM_LBRACE file yypos);
"}" => (sym Tokens.SYM_RBRACE file yypos);
"=" => (sym Tokens.SYM_EQUALS file yypos);
"\001\001\001" => (sym Tokens.SYM_SWERVE file yypos);

. => (Log.errorP (get_pos file yypos)
["Unrecognised characters in the configuration file."];

eof file);

The wrd definition defines the characters that can appear in a word. The
wrd1 definition is the subset that can be the first character of a word. This
excludes digits to avoid confusion with integers. Strings can contain
backslash escapes. Within the regular expression a few have to be handled
separately. The \\\n combination ensures that new-lines are only allowed if
they are immediately preceded by a backslash. Similarly a double-quote is

393



Chapter 9. The Swerve Detailed Design

allowed inside a string if it is preceded by a backslash. The last term ensures
that the sequence "foo\\" is correctly recognised as a backslash at the end
of a string and not a backslash followed by an internal double-quote.

The "\001\001\001" is the three CTRL-A character marker that is inserted
at the beginning of a .swerve file as described in the section called The
Configuration Grammar.

The lexer uses a few helper functions in the top section of the config.lex
file to build a token. For example the yytext variable contains the complete
matched text which for strings will include the double quote characters. The
fix_str function strips them off and also translates the backslash escapes.

fun fix_str yytext file yypos =
let

val pos = get_pos file yypos
val chars = explode(substring(yytext, 1, size yytext - 2))

fun count_nl [] pp = ()
| count_nl (#"\n"::rest) pp = (new_line pp; count_nl rest (pp+1))
| count_nl (c::rest) pp = count_nl rest (pp+1)

fun xlate [] rslt = implode(rev rslt)
| xlate (#"\\"::c::rest) rslt =
let

val nc =
case c of

#"n" => #"\n"
| #"t" => #"\t"
| _ => c

in
xlate rest (nc::rslt)

end
| xlate (c::rest) rslt = xlate rest (c::rslt)

in
count_nl chars (yypos+1);
Tokens.TOK_STRING(xlate chars [], pos, pos)

end

According the Config_TOKENS signature above the TOK_STRINGfunction
takes the text of the string as the first argument. The type for this argument
comes from the %term declaration in the grammar file.

394



Chapter 9. The Swerve Detailed Design

What’s a little tricky is keeping track of the line and column positions. I can
count lines by being careful to call my new_line function (below) for each
new-line character in a matched expression. I’ve made the new-line separate
from the white space expression (ws) to make it easier to count. ML-Lex
generates code to provide the position of a matched regular expression as the
character offset from the beginning of the source. This is available in the
yypos variable. If I save the offset of each new-line then I can work out the
column number of a character by subtracting the offset of the character from
that of the most recent new-line. This is taken care of in the following code.

val line = ref 1 (* current line *)
val line_pos = ref 0 (* char position of preceding \n *)

fun get_pos file yypos =
let

val col = Int.max(yypos - !line_pos, 1) (* see eof *)
in

Common.SrcPos {file=file, line= (!line), col=col}
end

fun new_line yypos =
(

line := !line + 1;
line_pos := yypos

)

The count_nl function in fix_str above is needed to account for new-line
characters embedded in strings. It has to track the source position within
the string to keep the positions right.

Integers as strings are converted to numeric values in the fix_integer
function. The sym function just adds source positions to the symbols. I won’t
show these here as they are simple enough. Reserved words are filtered out
in the check_reserved function.

val reserved_words = [
("SERVER", Tokens.KW_SERVER),
("NODE", Tokens.KW_NODE)
]
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fun check_reserved yytext file yypos =
let

val uword = Common.upperCase yytext
val pos = get_pos file yypos

in
case List.find (fn (w, _) => w = uword) reserved_words of

NONE => Tokens.TOK_WORD(yytext, pos, pos)
| SOME (_, tok) => tok(pos, pos)

end

Since there are only a few a search through a list is fine. The word matching
is case-insensitive.

The Parser Driver
This section completes the description of the parser by showing how it is
used in the Config module. The various structures and functors are
assembled to make a complete parser as follows.

(* Assemble the pieces to make a parser. *)

structure ConfigLrVals = ConfigLrValsFun(structure Token = LrParser.Token)
structure ConfigLex = ConfigLexFun(structure Tokens = ConfigLrVals.Tokens)
structure ConfigParser = JoinWithArg(structure LrParser = LrParser

structure ParserData = ConfigLrVals.ParserData
structure Lex = ConfigLex)

(* Max number of tokens to lookahead when correcting errors. *)
val max_lookahead = 15;

(* The syntax error messages use the token names. This is for editing
them to something more readable.

*)
val syntax_edits = [

("KW_SERVER", "Server"),
("KW_NODE", "Node"),
("SYM_SEMICOLON", "semicolon"),
("SYM_COMMA", "comma"),
("SYM_LBRACE", "’{’"),
("SYM_RBRACE", "’}’"),
("SYM_EQUALS", "’=’"),
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("TOK_WORD", "word"),
("TOK_STRING", "string"),
("TOK_INT", "number")
]

The ConfigLrVals structure contains the tables of parsing operations for
the grammar. The ConfigLex structure contains the complete lexer
specialised with the types needed to communicate with the parser. The
JoinWithArg functor is part of the ML-Yacc library. It joins all the pieces
together. The "WithArg" part of the name indicates that it supports an
argument being passed in at parsing time. I use this to carry the file name.
You can see it in the %arg declarations in the grammar and lexer files. (The
file argument isn’t used in the parser but the way the joining works it must
be there if the lexer has one).

The result is a complete parser in the ConfigParser structure which will
be used below.

A parser generated by ML-Yacc will do syntax correction. This means that if
there is a syntax error it will attempt to insert or delete tokens to change the
input into something parsable and then continue. It will produce an error
message showing what change it made which should give the user an idea of
what the original syntax error was. This sounds clever but it can be
confusing. It means that if you omit a semicolon for example you will get an
error message saying that one was inserted. This isn’t very user-oriented.
What’s worse is that the tokens in the messages are described using the
names that appear in the grammar file. I like to have distinctive terminal
names in the grammar file, in uppercase. So I process the error messages to
convert the terminal names to something more readable. The
syntax_edits list in the above code is used for this processing. The
max_lookahead parameter controls the error correction. The value 15 is
recommended in the ML-Yacc documentation for most purposes.

Here is the parse_config function which drives the parser.

and parse_config swerve file: Section list =
let

fun parse_error(msg, pos1, pos2) = Log.errorP pos1 [edit_errors msg]
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val swerve_done = ref false

fun input rstrm n =
(

if swerve andalso not (!swerve_done)
then

(swerve_done := true; "\^A\^A\^A")
else

TextIO.inputN(rstrm, n)
)

fun do_parser holder =
let

val rstrm = TextIOReader.get holder

fun do_parse lexstream =
ConfigParser.parse(max_lookahead, lexstream, parse_error, file)

val in_stream = ConfigParser.makeLexer (input rstrm) file

val (result, new_stream) = do_parse in_stream
handle ParseError => ([], in_stream)

in
TextIOReader.closeIt holder;
result

end
in

case TextIOReader.openIt’ file of
NONE => []

| SOME h => do_parser h
end

The TextIOReader.openIt’ function opens the file without worrying
about connection time-outs. The swerve argument indicates that a .swerve
file is being parsed. The .swerve files are actually read while the server is
processing connections so I should be worrying about time-outs for them but
the files are small so I’ll get away with it.

In the do_parser function the parsing is run by a call to the
ConfigParser.parse function. The second argument to
ConfigParser.parse is the lexer. The third is a call-back function for error
messages and the fourth is the %arg argument value. The lexer is made with
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the ConfigParser.makeLexer function which takes a source reading
function and a %arg argument value. The input function delivers the
contents of the file in chunks of size n. If it is a .swerve file then the first
chunk is forced to be the triple CTRL-A marker.

I’ve omitted a description of the syntax error editing. It’s just some
straight-forward string manipulation. The Substring.position function
does the job of finding the string to replace.

The end-result of all of this is parse tree whose type is
ConfigTypes.Section list , which is the type of the start non-terminal
in the grammar.

Processing the Parse Tree
The output from the parser is a list of sections of the type
ConfigTypes.Section . The two main processing steps that follow are for
the server and node sections. Refer to the processConfig function in the
section called The Config Module - Interface.

The process_server_section function looks through the sections for the
server configuration section.

and process_server_section sections =
let

fun match (SectServer _) = true
| match _ = false

val sects = List.filter match sections
in

case sects of
[SectServer {parts, ...}] => process_server_parts parts

| [] => (Log.error
["A server configuration section must be supplied."];

raise Bad)

| _ => (Log.error
["There are multiple server configuration sections."];

raise Bad)
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end

The process_server_parts function saves each parameter into the static
variables. (This design neatly allows the server section to be anywhere in the
file).

The process_node_sections function finds each node section and adds it
to the list of node configurations in a static variable. The static variables are
described in the section called The Config Module - Interface.

and process_node_sections sections =
let

fun process sect =
(

case process_node_section sect of
NONE => ()

| SOME config => cf_nodes := config :: (!cf_nodes)
)

fun match (SectNode _) = true
| match _ = false

val sects = List.filter match sections
in

case sects of
[] => (Log.log Log.Warn (TF.S

"There are no node configuration sections."))

| _ => app process sects
end

I won’t describe the parameter processing in detail. It’s a lot of long-winded
checking of values for the correct format and legality. I’ll just describe the
general idea.

The process_server_parts takes a list of ConfigTypes.SectionPart
values which contain one parameter each. It has two dispatch tables for
string-valued and integer-valued parts. These dispatch to functions that
check the value and return the value if it is legal. If the value is illegal then
an error message is logged and the Bad exception is raised. This is caught at
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the top in processConfig which aborts the whole server with a FatalX
exception.

Each dispatch step reduces the list of parts by removing those that are
recognised. If there are any parts left over then they must be unrecognised
parameters and error messages are logged. (See the unrec_param function).

The server configuration record is built up from the successful values
returned from the dispatch functions. Utility functions are used to extract
particular parameters. For example the reqstr function finds a required
parameter that has a string value. Defaulting is performed at this stage.

Node section processing is similar but since there are fewer parameters and
their types are more complex there isn’t a formal dispatch table. There isn’t
as much checking for legality as there should be. For example I don’t check
that the name of a built-in handler is legal at this stage, nor if a CGI script
exists.

MIME Type Configuration
The server configuration contains the path to the MIME types file. This has
the same format as is used by Apache. The contents of this file is read in by
the process_mime_file function and saved into a table. The table maps
from a file extension to a pair of major/minor MIME type names. For
case-insensitivity the extensions are saved in upper case.

(* The mime information is just a map from an extension to
the pair.

*)
val mime_table: (string * string) STRT.hash_table =

STRT.mkTable(101, NotFound)

There is only one external API function, lookupMime .

and process_mime_file() =
let

val ServerConfig {mime_file, ...} = getServerConfig()
in
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if Files.readableReg mime_file
then

FileIO.withTextIn (Abort.never())
mime_file () (read_mime mime_file)

else
Log.error ["The MIME types file is not readable: ", mime_file]

end

and read_mime mime_file stream : unit =
let

fun loop lnum =
(

case TextIO.inputLine stream of
"" => ()

| line => (do_line lnum line; loop (lnum+1))
)

... omitted material ...
in

loop 1
end

and lookupMime ext = STRT.find mime_table (upperCase ext)

The Common Layer
This layer collects various utility functions such as file I/O and low-level
systems such as logging. The largest modules here deal with resource
allocation (see the section called System Resource Management in Chapter
8). These are the Open File Manager and the Temporary File Manager. I’ll
describe the modules in alphabetical order.
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The Abort Module
This module implements an Abort type that signals that connection
processing should be aborted. This will be triggered by a time-out. An abort
can also be forced before the time-out happens which is useful if a connection
is found to be broken while trying to do I/O.

There are two ways the abort condition can be detected. It can be polled or a
CML event can be obtained for use in a CML.select call. Here is the module
API.

signature ABORT =
sig

type Abort

(* The arg is the time-out in seconds. *)
val create: int -> Abort

(* This never times out. *)
val never: unit -> Abort

(* This returns an abort event for synchronising. *)
val evt: Abort -> unit CML.event

(* This tests if the event has occurred. *)
val aborted: Abort -> bool

(* This forces the abort to happen early even if it is the ’never’
condition.

*)
val force: Abort -> unit

end

In an earlier design I implemented the time-out by starting a new thread for
each connection to wait on a time-out event. The thread was used to set the
flag that was tested by the aborted function. But since these timer threads
lasted for as long as the time-out period there would be large numbers of
them hanging around in the server during a heavy load of hundreds of
connections per second. The performance of the CML run-time does not scale
very well for large numbers of time-out events, as I explained in the section
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called Behaviour of Timeout Events in Chapter 7. After a few seconds of
heavy load I found the server grinding to a halt.

The current implementation uses an I-variable from the synchronous
variables module (see the section called Synchronous Variables in Chapter 6.
The I-variable has all of the necessary properties for an abort condition. It
can be set and tested like a flag and an event is available to indicate when it
is set. Here is the definition for the Abort type.

datatype Abort = Abort of unit SyncVar.ivar

To manage the timing I’ve included a manager thread that maintains a map
from future points in time to lists of Abort values.

structure Map = IntRedBlackMap

datatype Request =
Add of int * Abort (* (timeout, force) -> abort *)

datatype State = State of {
time: int, (* seconds since startup *)
live: (Abort list) Map.map(* waiting to expire *)
}

fun server ch () =
let

val start = Time.now()

fun toTime secs = Time.fromSeconds(LargeInt.fromInt secs)
fun trunc time = Int.fromLarge(Time.toSeconds time)

fun loop (state as State {time, ...}) =
let

fun request (Add (delay, abort)) = add delay abort state

(* If the timing drifts off it won’t hurt if this
event is for a time in the past. It will be immediately
enabled.

*)
val time_evt = CML.atTimeEvt(Time.+(start, toTime(time+1)))
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val new_state = CML.select[
CML.wrap(CML.recvEvt ch,

MyProfile.timeIt "abort request" request),

CML.wrap(time_evt,
(*MyProfile.timeIt "abort expire"*) (expire state))

]
in

loop new_state
end

... omitted material ...
in

loop (State {time = 0, live = Map.empty})
end

structure Mgr = Singleton(
type input = Request CML.chan
val newInput = CML.channel
val object = server
)

The Add request inserts an abort into the manager’s map.

and add delay abort (state as State {time, live}) =
let

(* Find out the end-time in seconds relative to
the start time of the server, rounded to the
nearest second.

*)
val now = Time.now()
val since = Time.-(now, start)
val ends = trunc(Time.+(

Time.+(since, toTime delay),
Time.fromMilliseconds 500
))

val _ = Log.testInform Globals.TestTimeout Log.Debug
(fn()=>TF.L ["Abort add delay=", Int.toString delay,

" now= ", Time.fmt 6 now,
" ends=", Int.toString ends
])

(* The insert operation will either insert or replace. *)
fun add_abort() =
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(
case Map.find(live, ends) of

NONE =>
let

val new_live = Map.insert(live, ends, [abort])
in

State {time=time, live=new_live}
end

| SOME ab_list =>
let

val new_live = Map.insert(live, ends, abort::ab_list)
in

State {time=time, live=new_live}
end

)
in

add_abort()
end

The key for the map is the the expiry time for the time-out measured in
seconds since the start of the manager. The add_abort function either
creates a new entry or adds the Abort to an existing entry. The maximum
number of entries will be the size of the time-out from the server’s
configuration plus 1. This number should stay reasonably small. A 60 second
time-out would be reasonable.

The manager counts through the seconds since startup. At each second the
expire function scans the keys of the map to see if any lists have expired.

and expire (state as State {time, live}) () =
let

(* Find out what the time really is. *)
val count = trunc(Time.-(Time.now(), start))

fun check_entry (at_time, ab_list, new_live) =
(

if count >= at_time
then
(

Log.testInform Globals.TestTimeout Log.Debug
(fn()=>TF.L ["Abort expiring, count=",

Int.toString count,
" live size=",

406



Chapter 9. The Swerve Detailed Design

Int.toString(Map.numItems live)
]);

(* Remove the entry and set all its aborts. *)
app set_ab ab_list;
new_live

)
else

(* Put the entry back into the map. *)
Map.insert(new_live, at_time, ab_list)

)

and set_ab (Abort ivar) = (SyncVar.iPut(ivar, ()))
handle _ => ()

val new_live = Map.foldli check_entry Map.empty live
in

State {time=count, live=new_live}
end

Since the red-black map is a pure functional value the expire function has
to build a new map at each scan. This won’t be a burden since it only
happens once a second and the number of entries is not large. During the
building the expired lists are simply omitted. The I-variables in the lists are
set and then the Abort values are released. If there is still a client
connection with a reference to an expired Abort it can poll it or wait on its
event. Other Aborts simply become garbage.

Here is the implementation of the API functions.

fun create delay =
let

fun run() =
let

val abort = Abort (SyncVar.iVar())
in

CML.send(Mgr.get(), Add(delay, abort));
abort

end
in

MyProfile.timeIt "abort create" run ()
end
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fun evt (Abort ivar) = SyncVar.iGetEvt ivar
fun aborted (Abort ivar) = isSome(SyncVar.iGetPoll ivar)

fun force (Abort ivar) = (SyncVar.iPut(ivar, ()))
handle _ => ()

fun never() = Abort (SyncVar.iVar())

The force function just sets the I-variable directly. If it is already set then
this is ignored.

The never value is useful for times when you know there won’t be a
time-out, for example during the startup of the server. Since it can be forced,
every caller must get a distinct value.

The Common Module
This gathers miscellaneous small declarations that are useful through-out
the server. The module is normally opened where-ever it is used to avoid
qualifying its declarations with a Common. prefix. So I don’t want too many
declarations which increases the risk of clashing with other identifiers in the
server.

The following declarations are involved in aborting the server.

exception FatalX
exception InternalError of string

fun toErr s = (TextIO.output(TextIO.stdErr, s);
TextIO.flushOut(TextIO.stdErr))

(* These shutdown the server with the given status code. *)
fun success() = RunCML.shutdown OS.Process.success
fun fail() = (toErr "Aborting\n"; RunCML.shutdown OS.Process.failure)

The FatalX exception aborts processing in the main thread when some . The
InternalError exception is for filling in impossible cases in the code
(fingers crossed). The success and fail functions will shutdown the server
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returning an appropriate process status. In either case the
Startup.finish code is run (see the section called The Startup Module).

This module has the declaration of the SrcPos type for describing the
location of an error in a configuration file. There is also STRT, the common
hash table over string keys.

The FileIO Module
This module contains utility functions that operate on disk files and
directories. They are typically wrappers around the SML Posix functions
which log errors for the server. The operations include removing and
creating a file, getting some file properties such as the size and modification
time and doing controlled reading of files and directories.

The last of these are non-trivial. The withTextIn function controls the
reading of a text file using the Open File Manager.

fun withTextIn abort file default func =
let
in

case TextIOReader.openIt abort file of
NONE => default (* the open failed *)

| SOME h =>
((func (TextIOReader.get h)) (* handle an I/O failure with closing *)

handle x => (Log.logExn x; TextIOReader.closeIt h; default)
) before (TextIOReader.closeIt h)

end
handle x => (Log.logExnArg file x; default)

The calling thread will be blocked until a file descriptor is available. The
abort of a connection due to a time-out is detected. Care is taken to ensure
that neither I/O errors nor an abort leave the file open. The caller supplies a
function func that reads the file via a TextIO.instream . The result from
this function will be returned if all goes well. If there is an error then the
default value will be returned. The SML General.before function is
useful for attaching a clean-up operation like closing a file to an expression.
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The listDir function does a similar job but returns a list of the files in a
directory, excluding the dot and dot-dot entries. An empty list is returned if
there is an error.

fun listDir abort dir =
let

fun loop strm rslt =
(

case OS.FileSys.readDir strm of
"" => rslt

| s => loop strm (s::rslt)
)

in
case DirReader.openIt abort dir of

NONE => [] (* the open failed *)

| SOME h =>
(loop (DirReader.get h) []) before (DirReader.closeIt h)

end
handle x => (Log.logExnArg dir x; raise x)

The exclCreate function for creating lock files is in this module. There is a
description of it in the section called The Startup Module.

The Files Module
This module contains simple utilities that manipulate file names and test
properties of files. For example there are the dirName , baseName,
splitExt and appendFile functions to break up and build file paths.
These are simple wrappers for the SML OS.Path functions. They don’t need
any further description.

The property testing functions are wrappers around the SML Posix.FileSys
functions that do a similar job to the Unix stat and access system calls.
Here are some of the functions. FS is an abbreviation of Posix.FileSys.

fun exists path = FS.access(path, [])

fun isDir path = exists path andalso FS.ST.isDir(FS.stat path)
fun isReg path = exists path andalso FS.ST.isReg(FS.stat path)
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fun isSym path = exists path andalso FS.ST.isLink(FS.stat path)

fun accessibleDir path =
(

isDir path andalso FS.access(path, [FS.A_READ, FS.A_EXEC])
)

The Log Module
This implements the Logging Manager. It writes time-stamped messages to
either standard error or a log file. The messages can have different severity
levels in the usual way. The severity threshold level can be set with the
LogLevel server configuration parameter (see the section called The Server
Parameters in Chapter 8).

The manager is needed to ensure that messages from different threads in
the server are logged atomically, that they don’t get their fragments
interleaved. I also want the server threads to not be held up while logging
messages. A thread should be able to send off a message and then
immediately continue with its work. The manager implements this by using
a CML mailbox to receive messages. A mailbox has unlimited buffering so no
send operation will ever block. This might introduce a denial-of-service risk
if a client connection can be induced to generate large numbers of errors
rapidly. But I think that the risk is miniscule.

Here is the basic logging API. Messages are composed from text fragments
(see the section called The Text Module) so that they can be built efficiently.

type Level

val Fatal: Level
val Error: Level
val Warn: Level
val Info: Level
val Debug: Level

(* This writes a logging message.
Error messages are counted.
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*)
val log: Level -> TextFrag.Text -> unit

(* This writes a logging message related to some source file position.
Error messages are counted.

*)
val logP: Level -> Common.SrcPos -> TextFrag.Text -> unit

The log level argument is tested and the message is discarded if the severity
is below the threshold. This can be wasteful if the message will usually not
be logged, such as for informational or debugging messages. For these I have
a slightly different API.

val inform: Level -> (unit -> TextFrag.Text) -> unit
val testInform: int -> Level -> (unit -> TextFrag.Text) -> unit

Here the message is represented by a function that generates the text. The
function won’t be called if the message is not logged so the cost of generating
the message is avoided. A typical use of this is the debugging message:

val _ = Log.inform Log.Debug (fn()=>TF.L
["HTTP reading into file len=", Int.toString len])

The integer to string conversion and assembly of the message will not be
done unless debugging messages are being logged.

The logging destination and level are controlled by these functions.

(* This returns the count of error messages seen so far.
*)
val numErrors: unit -> int

(* This waits until the log messages have drained.
*)
val flush: unit -> unit

(* Set the file for error logging. This is currently only
allowed to be set once.

*)
val setLogFile: string -> unit

(* Set the level for error logging. *)
val setLevel: Level -> unit
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(* Set the level for error logging to be at least as low as the
given level.

*)
val lowerLevel: Level -> unit

All messages with severity of Error or greater are counted. The server
startup code calls the Log.numErrors function to see if errors were
reported while reading the configuration files. If so then it aborts the server
with a fatal error.

The lowerLevel function is used while reading the server configuration
files to lower the log level to Warn to ensure that warning messages can be
seen. The flush function is needed when changing the logging destination
or level.

Another important source of logging messages are exceptions. Here is the
API for logging exceptions.

(* Log any kind of exception.
This is guaranteed not to raise any exception.

*)
val logExn: exn -> unit

(* Log with some extra information e.g. a file name. *)
val logExnArg: string -> exn -> unit

The logExn function itself must not raise any exceptions otherwise code
such as the following from the Listener module will go wrong when the
handler fails to complete.

handle x =>
let

(* See also Connect.getPort *)
val (_, port) = INetSock.fromAddr sock_addr

in
(

Socket.close sock;
TmpFile.releasePort port

) handle _ => (); (* being paranoid *)
Log.logExn x;
CML.send(lchan, ConnDied)
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end

The manager is a singleton object (see the section called The Singleton
Module) running a server thread for an internal protocol. Here is the
top-level of this server.

datatype LogRequest =
ReqLog of Level * TF.Text * Time.time

| ReqSetFile of string
| ReqNumErrors of int Sy.ivar
| ReqFlush of unit Sy.ivar (* flush with acknowledge *)

fun log_server mbox () =
let

(* An imperative state will be OK in this small context. *)
val num_errors: int ref = ref 0
val log_strm = ref TextIO.stdErr
val log_file = ref ""

fun loop() =
let

fun timeout() = TextIO.flushOut(!log_strm)
in

CML.select[
CML.wrap(Mailbox.recvEvt mbox, handle_msg),
CML.wrap(CML.timeOutEvt (Time.fromSeconds 1), timeout)
];

loop()
end

The manager’s state consists of the number of errors, and the output stream
for logging. (The log file name is not used in the code but might be useful
later). I’ve been a bit lazy and implemented the state using imperative
variables. This saves winding the state through all of the code especially as
it is rarely updated. Since only the server thread updates them they are safe.

I’ve included a 1 second time-out in the server. This flushes the log stream to
disk so that error messages show up promptly.

Here is the protocol handler.
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and handle_msg msg =
(

case msg of
ReqLog (level, msg, time) => internal_log level msg time

| ReqSetFile file =>
(

if !log_file = ""
then

set_log_file file
else

internal_log Error (TF.S
"Attempted to set the log file twice")
(Time.now())

)

| ReqNumErrors rvar => Sy.iPut(rvar, !num_errors)

| ReqFlush rvar => Sy.iPut(rvar, ())
)

The ReqNumErrors message is a request to return the number of errors.
The ReqFlush handshakes with the flush function below to make sure
that the mailbox is empty.

structure Logger = Singleton(
type input = LogRequest Mailbox.mbox
val newInput = Mailbox.mailbox
val object = log_server
)

fun send_request req = Mailbox.send (Logger.get(), req)

fun flush() =
let

val rvar = Sy.iVar()
in

send_request (ReqFlush rvar);
Sy.iGet rvar

end

The CML.recv call in flush will block until the server thread responds to
the ReqFlush message. All preceding messages in the mailbox must have
been processed at this point.
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Here is the function that actually prints the message.

and internal_log level msg when =
let

fun put s = TextIO.output(!log_strm, s)

val date = Date.fromTimeLocal(when)
val fdate = Date.fmt "%Y %b %d %H:%M:%S" date

in
put(concat[fdate, " ", formatLevel level, ": "]);
TF.appPrefix "\t" put msg;
put "\n";
update_counts level

end

I add a simple time-stamp to each message. The appPrefix call applies the
put function to each fragment of the message but putting a tab before each
subsequent line. This lays out multi-line messages nicely as long as the
TextFrag line-breaking is used properly.

Here is the implementation of the basic log API.

fun log level msg =
(

if level >= (!log_level) orelse level = Fatal (* speed up check *)
then

send_request (ReqLog (level, msg, Time.now()))
else

();

if level = Fatal
then
(

flush();
Common.toErr(concat[formatLevel level, ": ",

TF.toString TF.UseLf msg, "\n"]);
Common.fail() (* abandon execution *)

)
else

()
)

There is a potential race condition in that the log_level variable could be
set by more than one thread calling setLevel at the same time. But in
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practice the level is only set at configuration time when only one thread is
running.

Here is the implementation of the exception logging API.

fun logSysErr arg (msg: string, _: OS.syserror option) = error [arg, " ", msg]

fun logExn x = logExnArg "" x

and logExnArg arg x =
(

case x of
OS.SysErr x => logSysErr arg x

| IO.Io {cause, ...} => logExnArg arg cause

| InternalError msg => log Fatal (TF.L ["Internal Error: ", msg])
| FatalX => log Fatal (TF.S "Fatal Error")

| x => log_any x
)
handle _ => () (* don’t raise any more exceptions *)

and log_any x = log Error (TF.L [exnName x, ": ", exnMessage x])

This formats all kinds of exceptions. The system and I/O error exceptions are
the most likely and they come with extra detail. As a fall-back I can always
report the name of the exception with General.exnName .

The Mutex Module
The Singleton pattern (see the section called The Singleton Module) relies on
having a static variable that holds a handle to the singleton object. This is
updated with the handle the first time that it is accessed. Since it can be
accessed by any number of threads I have the classic race-condition problem.
I need some sort of mutual exclusion (mutex) to control access to these static
variables. The Mutex module implements mutexes using an M-variable as
described in the section called Semaphores via Synchronous Variables in
Chapter 6. Here is the API for the module.

signature MUTEX =
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sig
type Mutex

(* Mutex values can be saved over an exportML so you can
"statically" create them.

*)
val create: unit -> Mutex

(* This runs the function in the critical section.
This will work with CML running or not.

*)
val lock: Mutex -> (unit -> ’a) -> ’a

end

A mutex can be created as a top-level value in a module. This can be saved in
an exported heap without any trouble. The lock function is passed a job
function that typically updates some static variable. Here is the
implementation.

structure Mutex: MUTEX =
struct

structure SV = SyncVar

type Mutex = bool SV.mvar

fun create() = SV.mVarInit true

fun lock mutex func =
(

SV.mTake mutex;
let

val r = func()
in

SV.mPut(mutex, true);
r

end
handle x => (

SV.mPut(mutex, true);
raise x
)

)

end
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The MyProfile Module
This module implements two utilities. The first is a simple run-time timer to
measure how many microseconds it takes to run a function. I use this to get
some idea of how long the server spends performing each step in returning a
page. On my Linux ix86 machine the timer has a resolution of 1
microsecond. It can time functions down to around 5 microseconds with
reasonably reliable results.

The second utility is some code for profiling. The standard profiling code
described in the section called Execution Time Profiling in Chapter 4 will not
link with CML since it uses code within the SML/NJ compiler that is linked
with the non-CML TextIO module. I have repeated the profiling report
function here with some simplifications. It can produce a profiling report on
stdout when the server has been compiled with profiling.

The Open File Manager
This module implements the resource management for file descriptors that
is described in the section called System Resource Management in Chapter 8.
If a connection cannot get enough file descriptors then I could either abort
the connection or make it wait until more are available. Aborting is a bit
crude. With the concurrent design I should be able to get the parts of the
server to cooperate better than that.

The Open Manager is a central place where the usage of file descriptors is
counted. Before a connection attempts to open files it must request the Open
Manager to allocate it the number of descriptors that it will need. If there
are not enough free then the connection must wait. The connection will be
put onto a queue. When another connection closes its files the descriptors
will be returned to the Open Manager. The Manager will pass them onto a
waiting connection. The waiting connections are dealt with in
first-in-first-out order for fairness.
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If a connection is aborted or fails with an internal exception then there is a
risk that files will be left open and the server will "leak" descriptors and
eventually grind to a halt. I already rely on the SML garbage collector to
clean up a connection if there is a time-out or another abort condition. I want
the open files to be cleaned up as well. This is an application of finalisation
as described in the section called Weak Pointers in Chapter 4.

I don’t want to rely on finalisation to close files during normal operation.
This would leave files open unnecessarily until the next garbage collection.
The Open Manager must allow files to be opened and closed normally but
also detect when an open file has become garbage and close the file and
make the file descriptor available for reuse.

A socket for an incoming connection is a special case. Its file descriptor is
created by the operating system. The best that the server can do is make
sure that it is counted by the Open Manager after the connection is
established.

Being Generic
The Open Manager must be able to deal with all of the different kinds of
objects that require file descriptors. These include sockets, regular files
(binary and text), directories and pipes to communicate with child processes.
Each of these kinds has a different way of opening and closing.

I want the Manager to be extensible. It should be easy to add new kinds of
file objects. This is something that object-oriented languages do well. In an
O-O language I would define an abstract base class for a file object and
sub-class it for each kind. The language would dynamically dispatch an
open() method on a file object depending on the actual kind of the resource.

Unfortunately SML does not provide any form of dynamic dispatch. I could
revert to a variant-record structure with a datatype like

datatype Object =
Regular of ...

| Directory of ...
...
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But then I would have to have case expressions all over the place where the
file object is handled. This is very messy and hard to extend. This is the very
problem that the object-oriented paradigm is designed to solve.

An alternative structure is to divide the Manager along the boundaries
between kinds. I will create separate managers specialised to each kind of
file object. These managers must cooperate to keep a count of the open files
so there is yet another Open Counter manager that just counts the files. It
does not need to know anything about operating on the files.

The generic manager, OpenMgrFn, is a functor specialised to its kind of file
with an implementation module. The resulting kind-specific manager needs
its own specialised finalisation manager, Fin , since the finalisation needs to
know how to close any open files that it finds.

The resulting class diagram is shown in Figure 9-2.

Figure 9-2. The Open Manager Objects.

The generic functor is organised like this

functor OpenMgrFn(
structure Impl: OPEN_MGR_IMPL
) : OPEN_MGR =

struct
open Common
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structure TF = TextFrag

structure Ctr = OpenCounter
structure Impl = Impl

structure Fin = FinaliseFn(
structure Type =
struct

type T = Impl.Opened * Ctr.Allocation
fun finalise (opn, _) = ignore(Impl.closeIt opn)
val name = Impl.name

end)

type Arg = Impl.Arg
type Opened = Impl.Opened
type Closed = Impl.Closed
type Holder = Fin.Holder

It takes an implementation structure parameter called Impl . The functor
builds a specialised finaliser that it calls Fin .

An implementation conforms to the following signature.

signature OPEN_MGR_IMPL =
sig

val name: string

type Arg
type Opened
type Closed

(* This is the number of file descriptors that are needed
by the open.

*)
val num_fds: int

datatype Result =
Success of Opened

| Fail (* give up totally *)
| Retry (* should try again later *)

val openIt: Arg -> Result
val closeIt: Opened -> Closed
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end

The openIt function must open the object and (if successful) return a type
Opened which represents the opened object. The Result type is used by the
handshaking protocol with the Open Counter manager which is described in
the section called Opening a File.

Finally the Open Manager produces this signature.

signature OPEN_MGR =
sig

structure Impl: OPEN_MGR_IMPL

(* This describes what can be opened or closed. *)
type Arg = Impl.Arg

(* This represents an open object. *)
type Opened = Impl.Opened

(* This is the type returned from a close operation. *)
type Closed = Impl.Closed

(* This is a holder for the object. The object will be
finalised if the caller loses its reference to the
object.

*)
type Holder

val get: Holder -> Opened

(* Open/close the object.
This will return NONE if the open failed or was aborted.

*)
val openIt: Abort.Abort -> Arg -> Holder option
val openIt’: Arg -> Holder option
val closeIt: Holder -> Closed

end

The design of these managers depends on the signature constraints being
transparent. Transparent means that information about the implementation
of a type is known by the compiler and allowed to propagate through the
various modules. The ExecReader module relies on this. If you follow
through the declarations you find that the following types are identical.
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ExecReader.Opened = ExecReader.Impl.Opened = Unix.proc * string

The code for the CGI Node Handler in the section called The CGI Node
Handler can extract the Unix.proc value to manipulate the process by
writing

val (proc, _) = ExecReader.get holder

The opposite of transparent is an opaque signature constraint which is
indicate by using ":> " instead of ": " before the signature name. With an
opaque the implementation of the Opened type would be hidden since only
the name is declared in the OPEN_MGR_IMPLsignature.

Finalisation
Finalisation is done by maintaining a collection of weak references to each
open file. To make this work I have to have one value that is shared between
the finalisation manager and a client. The manager keeps a weak reference
to this value and the client has one or more normal (strong) references.
When all of the strong references have gone the value will be collected and
then the weak reference will report that the value is gone. This will be a
trigger for the manager to close the file.

Note that the shared value is not the open file. The manager must still have
a reference to the file after the shared value has been collected. The client
must be careful not to hold a reference to the open file without also having
one to the shared value. To make this safer the client will only be able to get
to the open file from the shared value.

A finalisation manager has the following signature. The Holder type will be
chosen to ensure that it is always copied by reference.

signature FINALISER =
sig

(* This is the value that is shared between the client
and the manager.

*)
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type Holder

(* This is the value in the holder that will be finalised. *)
type T

val get: Holder -> T

(* This adds a new T to the manager. *)
val add: T -> Holder

val remove: Holder -> unit
end

The generic code for the manager is in a functor which takes the details
about the type of the finalised value as a parameter.

signature FINALISE_TYPE =
sig

type T

val finalise: T -> unit
val name: string

end

functor FinaliseFn(
structure Type: FINALISE_TYPE
): FINALISER =

struct

A manager is a concurrent object with a simple list of weak references as its
state. It takes messages to add and remove values from its list. Its message
protocol is

datatype Req =
ReqAdd of T * Holder Sy.ivar

| ReqRemove of Holder

(* When the holder is collected we should have the last
strong ref to T which we finalise.

*)
type Wref = int * T * (Holder W.weak)

(* This requires a linear scan of all held objects which
shouldn’t be a performance problem since GCs are
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infrequent.
*)
type State = int * Wref list

The add message creates the holder. The holder contains a pair of an integer
key and the value to be finalised. The integer key allows holders to be
identified since we can’t assume that the value supports the equality
operator. The key is also applied to the weak references.

type T = Type.T

type Pair = int * T

(* We use a ref on the Pairs to ensure that they are
copied by reference.

*)
type Holder = Pair ref

The manager must receive a signal telling it when the garbage collection has
been done. This is received as a message from the signal manager (see the
section called The Signal Manager).

fun server chan () =
let

val gc_port = SignalMgr.mkGcPort()

fun loop state =
(

loop(CML.select[
CML.wrap(CML.recvEvt chan, handle_msg state),
CML.wrap(SignalMgr.gcEvt gc_port, finalise state)
])

)
in

loop(0, [])
end

The finalise function scans the weak references and tests which ones to
keep.

and finalise (state as (tag_cnt, wrefs)) () : State =
let

val _ = Log.testInform G.TestFinalise Log.Debug
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(fn()=>TF.L ["Finaliser ", Type.name, ": finalising"])

(* Test if this wref should be kept or finalised.
*)
fun keep (_, value, wref) =
(

case W.strong wref of
NONE => (Type.finalise value; false)

| SOME _ => true
)

in
(tag_cnt, List.filter keep wrefs)

end

Opening a File
Opening a file requires a sequence of steps involving handshaking between
the Open Counter and the Open Manager. The goal is to ensure that there is
no chance of a file descriptor being lost due to some error while opening the
file.

First here is the signature for the Open Counter manager.

signature OPEN_COUNTER =
sig

(* This represents some number of file descriptors. It ensures
that a release matches the allocation.

*)
type Allocation

datatype Response =
Success

| Fail of Allocation
| Retry of Allocation

(* Return the response on the supplied channel. *)
type Start = Allocation * Response CML.chan

(* Pass in a channel to receive the start message. *)
val request: (int * Start CML.chan) -> unit

(* Release n file descriptors. *)
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val release: Allocation -> unit

(* Return the number open and the number pending. *)
val stats: unit -> int * int

end

An Allocation value represents some number of open files. It provides
some protection against programming errors by ensuring that the client can
only return exactly the same number that it allocated.

The file allocation starts with a call from the openIt function of the Open
Manager to the request function of the Open Counter. The Open Counter
will, either immediately or some time later, start a handshake with the Open
Manager using the channel in the request. The Start type is the message
passed to the Open Manager to start the handshake. The Open Manager
attempts to open the files and responds with a Response type. There is
provision for retrying an open that fails due to an unexpected lack of file
descriptors. In this case the Open Manager will go to the end of the queue to
wait for more descriptors to become available. Figure 9-3 shows the sequence
of the handshake for the Success and Retry cases. Fin is the specialised
finaliser within the Open Manager.
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Figure 9-3. The File Opening Handshake.

A consequence of this design is that only one open operation can occur at a
time. The Open Counter runs the handshaking sequentially. This shouldn’t
be a problem since file opens, even the forking of CGI-BIN scripts, are quick.
If this sequential processing proves to be a problem the Open Manager could
be changed to run concurrent handshaking.
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Here is the code for the openIt function.

fun openIt abort arg =
let

val schan = CML.channel()

(* We may have to try several times.

To be safe from deadlock there must be no possibility
of an exception preventing the state transitions from
completing. Otherwise the counter will block forever.

So when we abort we must leave a thread behind to finish
the handshaking. Trying to remove the pending request from
the counter risks race conditions.

*)
fun try() =
let

fun got_alloc (alloc, rchan) =
(

case Impl.openIt arg of
Impl.Success opn => (CML.send(rchan, Ctr.Success);

SOME (opn, alloc))

| Impl.Fail => (CML.send(rchan, Ctr.Fail alloc); NONE)

| Impl.Retry => (CML.send(rchan, Ctr.Retry alloc); try())
)
handle _ => (CML.send(rchan, Ctr.Fail alloc); NONE)

fun got_abort() =
let

fun dummy() =
let

val (alloc, rchan) = CML.recv schan
in

CML.send(rchan, Ctr.Fail alloc)
end

in
CML.spawn dummy;
NONE

end
in

CML.select[
CML.wrap(CML.recvEvt schan, got_alloc),
CML.wrap(Abort.evt abort, got_abort)
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]
end

in
(* Start trying *)
Ctr.request (Impl.num_fds, schan);

(* Once opened, set up a finaliser on the Opened value. *)
case try() of

NONE => NONE
| SOME farg => SOME(Fin.add farg)

end

A Specialised Open Manager
Here is the code the creates TextIOReader , an Open Manager specialised to
reading text files using the TextIO module (which has the handy
inputLine function).

local
structure E = Posix.Error
structure TF = TextFrag

structure Impl =
struct

val name = "TextIOReader"
type Arg = string
type Opened = TextIO.instream
type Closed = unit

val num_fds = 1

datatype Result =
Success of Opened

| Fail
| Retry

fun openIt file =
(

Success(TextIO.openIn file)
)
handle

x as IO.Io {cause = OS.SysErr (_, SOME err), ...} =>
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(
if err = E.mfile orelse err = E.nfile
then

Retry
else
(

Log.logExn x; (* a real error *)
Fail

)
)
| x => (Log.logExn x; Fail)

fun closeIt strm =
(

TextIO.closeIn strm
)
handle x => Log.logExn x

end
in

structure TextIOReader = OpenMgrFn(structure Impl = Impl)
end

This code appears at the top module level. It defines two modules and an
alias E for the Posix.Error module and the usual TF alias. The E, TF and
Impl are made private to the TextIOReader module using local...end
syntax.

The Impl module has to include all of the declarations in the
OPEN_MGR_IMPLsignature, including the Result type, which varies with
the Opened type. What it opens is a file path so Arg is a string. The opened
value is an input text stream. This only requires one file descriptor. The
openIt function checks for the EMFILE and ENFILE error codes which
indicate that no file descriptor is available. The open will be retried later in
this case.

Since the web server is going to be forking/exec-ing CGI-BIN scripts it
should be setting the close-on-exec flag on most of the files that it opens. It
would be a security breach to let scripts inherit internal files, sockets, etc.
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Unfortunately there is no mechanism in SML/NJ to operate on a TextIO or
BinIO stream at the file descriptor level. I do do it for sockets though.

The Signal Manager
The web server should be catching signals so that it can clean up temporary
files and such when it is killed. A CML thread can’t be interrupted but I can
broadcast an interrupt message to all interested threads. But this is rather
awkward to handle. Each thread would have to be listening for an interrupt
at each place where it may block for a while. At the moment all that I do is
terminate the server by calling the common fail() function. This shuts
down CML and I have registered a shutdown handler in the Main module.
This handler can clean up for the server. See the section called The Startup
Module.

I also need to distribute a signal indicating when a garbage collection has
been done. This is used by finalisation code, for example see the section
called Finalisation.

Signal handling is provided by the Signals module, see the section called
Signals in Chapter 4. The GC signal is broadcast to the server using the
Multicast module of the CML library. To use this you create a channel to
carry a message stream and any thread wishing to receive these messages
creates a port which listens to that channel. The signature for the signal
manager is

signature SIGNAL_MGR =
sig

(* Each client must have its own port. *)
type GcPort
type IntPort

datatype Interrupt = SIGINT | SIGTERM

(* This sets up the signal handling. *)
val init: unit -> unit
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(* Create a new client port.
*)
val mkGcPort: unit -> GcPort
val mkIntPort: unit -> IntPort

(* This creates an event for the arrival of the
next GC signal. Call it anew for each GC.

*)
val gcEvt: GcPort -> unit CML.event

(* This creates an event for the arrival of the
next interrupting signal.

*)
val intEvt: IntPort -> Interrupt CML.event

end

GC messages don’t carry any information so I just use the unit type. They
are delivered to a GcPort . The mkGcPort function creates a new port to
receive a GC message. The gcEvt function returns an event that a thread
can select on. The code for handling the GC signal is

type GcPort = unit Multicast.port
type IntPort = Interrupt Multicast.port

val gc_mchan: unit Multicast.mchan option ref = ref NONE
val int_mchan: Interrupt Multicast.mchan option ref = ref NONE

fun init() =
(

gc_mchan := SOME(Multicast.mChannel());
int_mchan := SOME(Multicast.mChannel());

Sig.setHandler(Sig.sigGC, Sig.HANDLER gc_handler);
Sig.setHandler(Sig.sigINT, Sig.HANDLER int_handler);
Sig.setHandler(Sig.sigTERM, Sig.HANDLER int_handler);

(* We’d better catch this for when writing to sockets. *)
let

val s = valOf(Sig.fromString "PIPE")
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in
Sig.setHandler(s, Sig.HANDLER pipe_handler)

end;
()

)

and gc_handler(_, _, kont) =
(

Log.testInform Globals.TestTiming Log.Debug
(fn()=>TF.S "GC signalled");

Multicast.multicast(valOf(!gc_mchan), ());
kont

)

The GC signal handler just broadcasts a message and continues the server.

The channels can’t be set up until the server is running with the CML
library. So an init function is required to set up the channels. This must be
called at the very beginning of the server startup since the open file manager
(the section called The Open File Manager) requires it before any files can be
opened. The test harnesses must do the same.

The Singleton Module
This module is a simple encapsulation of the start-up of a thread that
implements a singleton concurrent object. The object is represented by a
CML channel or mailbox that receives the messages of its API.

The module is a functor that is specialised by the type of the input channel, a
function to create the channel and the function that runs in the thread. Here
is the complete code for the module.

functor Singleton (
type input
val newInput: unit -> input
val object: input -> unit -> unit
)
: SINGLETON =

struct
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structure SV = SyncVar

type input = input

val input: input option ref = ref NONE

(* An initialised mvar can be saved over an exportML.
The value it contains is the baton, like a binary semaphore.

*)
val mutex = Mutex.create()

(* The double-checked locking will be safe in CML since it
isn’t really multi-tasking or SMP (cf Java).

*)
fun get() =
(

case !input of
NONE =>

let
fun init() =
(

case !input of
NONE =>

let
val i = newInput()

in
input := SOME i;
ignore(CML.spawn (object i));
i

end
| SOME i => i

)
in

Mutex.lock mutex init
end

| SOME i => i
)

end

The module provides a single function called get which returns the channel
to the object. A thread for the object is spawned the first time that the get
function is called.
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The channel is stored in a static variable so its update must be synchronised
to protect against more than one thread calling the get function at the same
time. See the section called The Mutex Module.

Here is an example of the use of this module. This is taken from the section
called The Log Module.

structure Logger = Singleton(
type input = LogRequest Mailbox.mbox
val newInput = Mailbox.mailbox
val object = log_server
)

fun send_request req = Mailbox.send (Logger.get(), req)

The Text Module
A common operation in the server is constructing text messages. This varies
from constructing the headers of HTTP responses through to constructing
error messages for logging. In a traditional language like C a programmer
typically assembles a message into a buffer by copying text fragments. This
is copy-by-value for the fragments. If you try to be more efficient and do
copy-by-reference for the fragments in C you can easily end up with slower
code. This is because you will probably end up calling malloc a few times
and the overhead will probably outweigh the cost of copying most strings.
The memory management issues make it worse. Strings are often copied just
to isolate the various domains of ownership of memory and also to protect
against strings being modified.

The low-overhead memory allocation of SML/NJ changes the balance in
favour of copy-by-reference. A list of strings is a list of pointers to strings and
can usually be constructed faster than the strings can be copied and of
course memory management is not an issue.

The TextFrag module implements a data structure that represents a string
as an aggregate of string fragments1. It is also independent of the different
line termination conventions, a LF or a CR-LF. Here is the Text type.
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datatype Text =
Empty

| Nl (* a line break, perhaps CRLF *)
| WS (* exactly one blank character *)
| S of string
| L of string list (* concatenation of some strings *)
| C of Text list (* concatenation of texts *)

In the following description I abbreviate the module name to TF (as I do in
the server code). The TF.S constructor is the simplest case that represents a
single string. The string should not contain any new-line character. Use the
TF.Nl constructor to separate lines. This will be substituted later with
whatever line-termination convention you want. The TF.C constructor
combines fragments together. For example here are two lines of text.

val foxes =
TF.C [TF.S "The quick brown fox", TF.Nl,

TF.S "jumps over the lazy dog"]

The TF.WS constructor is available as a useful separator when joining
fragments. The TF.L constructor handles the common case of concatenating
multiple strings.

Here is the main part of the API.

datatype LineSep = UseLf | UseCrLf

(* This applies the function to each string piece. The function
could be print() for example.

*)
val apply: LineSep -> (string -> unit) -> Text -> unit

(* Calculate the length in characters of the text.
*)
val length: LineSep -> Text -> int

(* This is like apply but it prints the prefix before
each subsequent line.

*)
val appPrefix: string -> (string -> unit) -> Text -> unit

(* Produce the string that the Text corresponds to.
*)
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val toString: LineSep -> Text -> string

The apply function can be used to print a text fragment. For example to
print the foxes fragment above to the standard output:

TF.apply TF.UseLf print foxes

The appPrefix is similar but inserts a prefix string before subsequent lines
and only terminates with LF. I use this for indenting continuation lines in
error messages. The toString function concatenates all of the text
fragments by copying, which you sometimes may have to do.

I’ll just show the implementation of the apply API to show you how it
works. The other functions are similar. Note that app is the standard SML
List.app function.

(* crlf is the string to apply in place of Nl. *)
fun applyP crlf func Empty = ()
| applyP crlf func Nl = func crlf
| applyP crlf func WS = func " "
| applyP crlf func (S s) = func s
| applyP crlf func (L ss) = app func ss
| applyP crlf func (C lst) = app (applyP crlf func) lst

fun lsep UseLf = "\n"
| lsep UseCrLf = "\r\n"

fun apply sep func text = applyP (lsep sep) func text

fun appPrefix prefix func text = applyP ("\n" ^ prefix) func text

A complex example of text fragments can be found in the directory fancy
indexing code that is described in the section called The Directory Node
Handler.
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The TmpFile Module
In the section called System Resource Management in Chapter 8 I described
how the server must manage the amount of disk space used by temporary
files. If there is insufficient disk space for a connection to save an incoming
entity then the connection must be blocked until the space is available or the
connection times-out. If a connection is aborted then any temporary files
that belong to it must be deleted.

At the moment the only use I have for temporary files is for saving incoming
entities in HTTP requests. I label the body file that is associated with a
connection with the port number for the connection. Then when a connection
is closed it can be easily found and deleted. I don’t use the finalisation
facility of the section called Finalisation since I want disk files to be cleaned
up as soon as possible and I can rely on the connection code to catch all error
or abort conditions for the connection.

Here is the API for the TmpFile Manager.

type TmpFile

(* Allocate a new file for the given port number.
If we give up trying to create the file then we return NONE.

*)
val newBodyFile: Abort.Abort -> string -> int -> int -> TmpFile option

(* Get the file name. *)
val getName: TmpFile -> string

(* This releases the files associated with the port number.
They will be deleted.

*)
val releasePort: int -> unit

(* This sets the temp file disk space limit. It must be
called before any temp files are created, preferably
from the config. The size is in bytes.
The limit must be no larger than 10^9 bytes.

*)
val setDiskLimit: int -> unit
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The TmpFile type represents the allocation of a name and disk space for the
file. The caller must still write the data into the file. The newBodyFile
function allocates a TmpFile for saving the entity body from a HTTP
request. The arguments are the abort condition, temporary directory name,
file length and port number. Only one body file should be allocated with the
same port number.

The getName function will return the full path of the file for the caller to
write to. The releasePort function deletes all files that are labelled with
the given port number. The caller should not retain any TmpFile values
with that port number after doing this.

The setDiskLimit function sets the number of bytes that are available for
sharing out to the temporary files. I assume that all files will be in the same
temporary directory or if not then they are all in the same file system. The
file system must not be mounted over NFS since files are created with
exclusive locking. This is specified in the section called The Server
Parameters in Chapter 8.

The manager is a singleton concurrent object. Here are the types in the
module.

datatype TmpFile = TmpFile of {
id: int,
port: int,
file: string, (* absolute file path *)
len: int (* a size estimate *)
}

and AllocRequest =
Record of Pending

| Release of int (* release all files on the port *)
| Undo of TmpFile (* undo one allocation *)

and Reply = Success of TmpFile | Reject

(* This state could allow multiple files on the
same port number. It must be pure to allow
recursion through allocate().

*)
and State = State of {
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tmps: TmpFile list, (* successfully allocated *)
pending: Pending list,
used: int, (* disk space used in bytes *)
id_cnt: int, (* to allocate ids *)
last_warn: Time.time option(* time of the last warning *)
}

(* A pending request has the port, file and length
and a reply channel.

*)
withtype Pending = int * string * int * Reply Sy.ivar

The TmpFile value includes a unique identifier for simple equality testing.
AllocRequest and Reply make up the protocol for the Manager. The Undo
request is for cleaning up if a request is aborted. The Manager’s state
includes a list of all allocated TmpFile values, all pending requests and
counters for disk space and identifiers. The Manager will log a warning if it
runs short on disk space. These warnings are limited to 1 per second to avoid
flooding the log. The last_warn field records the time when the last
warning was given.

The disk space limit is recorded in a static variable.

val disk_limit = ref (valOf Int.maxInt)

fun setDiskLimit n = (disk_limit := n)

This is set once when the configuration file is read (see the section called The
Config Module - Interface) so I don’t have to worry about concurrent access to
the variable.

Here is the allocate function that implements the Record request from
the newBodyFile function.

and allocate
(state as State {tmps, pending, used, id_cnt, last_warn})
(pend as (port, file, len, rvar))
=

let
val _ = Log.testInform Globals.TestTmpFile Log.Debug

(fn()=>TF.L ["TmpFile allocate file ", file])
in
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if used + len <= !disk_limit
then

let
val tmp = TmpFile {

id = id_cnt,
port = port,
file = file,
len = len
}

in
Sy.iPut(rvar, Success tmp);

State {
tmps = tmp::tmps,
pending = pending,
used = used + len,
id_cnt = id_cnt + 1,
last_warn = last_warn
}

end
else

let
val now = Time.now()

in
if last_warn = NONE orelse

Time.toMilliseconds(Time.-(now, valOf(last_warn)))
>= 1000

then
Log.log Log.Warn

(TF.S "TmpFile: Tmp disk space limit exceeded")
else

();

State {
tmps = tmps,
pending = pend::pending,
used = used,
id_cnt = id_cnt,
last_warn = SOME now
}

end
end
handle _ => (* e.g. integer overflow *)

(
Sy.iPut(rvar, Reject);
Log.testInform Globals.TestTmpFile Log.Debug (fn() => TF.L [

"TmpFile allocation error on port ", Int.toString port]);
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state
)

This just does a simple check of the requested space against the amount
available. If there is enough it sends a Success reply. If there isn’t enough
space then the request is just added to the pending list and a warning may
be logged.

I must be careful not to let an exception abort the Manager. The (warn level)
logging and FileIO.removeFile functions do not raise exceptions. But I
have to watch out for integer overflow with the large numbers that file sizes
might be.

The release and undo functions implement the remaining two requests to
the Manager.

(* Remove all those files on the port. *)
and release state the_port =
let

fun keep (TmpFile {port, ...}) = (the_port <> port)
in

remove state keep
end

(* Remove based on the id. *)
and undo state tmp =
let

val TmpFile {id = tmp_id, ...} = tmp
fun keep (TmpFile {id, ...}) = (tmp_id <> id)

in
remove state keep

end

These are just two different ways to remove files. The first removes files on a
given port. The second removes a particular file based on its unique id. The
common code is in the remove function. The different behaviour is
represented by the keep functions which decides which files to keep.

and remove
(state as State {tmps, pending, used, id_cnt, last_warn})
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keep
=

let
val _ = Log.testInform Globals.TestTmpFile Log.Debug

(fn()=>TF.S "TmpFile removing")

(* First remove files. Calculate the new used space.
The pending list is separated out.

*)
fun filter [] new_tmps new_used =
(

State {
tmps = new_tmps,
pending = [],
used = new_used,
id_cnt = id_cnt,
last_warn = last_warn
}

)
| filter (tmp::rest) new_tmps new_used =
(

if keep tmp
then

filter rest (tmp::new_tmps) new_used
else

let (* This raises nothing. *)
val TmpFile {file, len, ...} = tmp

in
FileIO.removeFile file;
filter rest new_tmps (new_used - len)

end
)

(* Retry all of the pending requests. Any that can’t
be satisfied will end up in the pending list again.
We use a FIFO order for rerunning the requests.

*)
fun retry [] new_state = new_state
| retry (p::rest) new_state = retry rest (allocate new_state p)

val filtered_state = filter tmps [] used
val final_state = retry (rev pending) filtered_state

in
final_state

end
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The keep function is used to filter the TmpFile values that the Manager has
retained. If a file is deleted then the amount of used space is reduced by the
file’s length. There may then be space for some of the pending requests to be
satisfied. The simplest way to handle this is to rerun all of the pending
requests by feeding them to the allocate function again. If there are still
pending requests that can’t be satisfied then they will end up back in the
pending list in the state. Note that since the pending requests are pushed
onto the front of the list but I want to serve them in first-come-first-served
order I need to reverse the pending list before rerunning it. Since there
should be few pending requests if any in normal operation this design will be
efficient enough.

The processing of the newBodyFile function has two parts. The first part is
to allocate a file name. I choose names of the form "portnnnn" where "nnnn"
is the port number. If there is a name clash then subsequent names of the
form "portnnnn_1" etc. are tried. Here is the code for the first part.

fun newBodyFile abort tmp_dir len port =
let

(* If we get a name clash then add _ suffixes.
*)
fun try n =
let

val base = concat[
"port", Int.toString port,
if n = 0 then "" else ("_" ^ (Int.toString n))
]

val file = Files.appendFile tmp_dir base

val () = Log.testInform Globals.TestTmpFile Log.Debug
(fn() => TF.L ["newBodyFile trying ", file]);

in
if FileIO.exclCreate file
then

allocate port file len
else
(

if n > 10
then
(

Log.error ["File name clashes for file ", file];

446



Chapter 9. The Swerve Detailed Design

NONE (* give up *)
)
else

try (n+1)
)

end

The try function makes around 10 attempts to create the file. The
FileIO.exclCreate function ensures that the name is exclusively
allocated to the server. There may be left-over files using the same port if a
previous run of the server crashed.

The second part is the reservation of disk space. This is done with the
following allocate function in newBodyFile .

and allocate port file len =
let

val rvar = Sy.iVar()

fun got_reply (Success tmp) = SOME tmp
| got_reply Reject = (FileIO.removeFile file; NONE)

and got_abort() = (CML.spawn dummy; NONE)

(* Run this to catch left-over allocation requests. *)
and dummy() =
(

case Sy.iGet rvar of
Success tmp => CML.send(Alloc.get(), Undo tmp)

| Reject => ()
)

in
CML.send(Alloc.get(), Record(port, file, len, rvar));

CML.select[
CML.wrap(Sy.iGetEvt rvar, got_reply),
CML.wrap(Abort.evt abort, got_abort)
]

end
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The function sends a Record message to the Manager to record the file’s
information. Then it waits for the reply or an abort condition. If a Success
reply is returned then the TmpFile value is returned to the caller. If a
Reject reply is returned then there has been some kind of error. The file is
removed and NONEis returned to the caller.

If there is an abort condition then I need to abort the request somehow. It
would be tricky to try to extract the request out of the Manager without race
conditions. The CML withNack function could be used to inform the
manager about the loss of the client. But for simplicity I like to leave the
request with the Manager and instead leave behind a dummy receiver in a
new thread that will immediately undo a successful allocation. The Undo
message will remove the file. Assuming that aborts are rare this will be
efficient enough.

The URL Module
This module implements a parsed representation for a URL. For details on
the URL syntax see the section called URL Syntax in Chapter 8.

datatype URL = HTTP_URL of {
host: string option,
port: int option,
userinfo: string option, (* user name/password *)
path: URLPath,
query: string option, (* in the undecoded form *)
fragment: string option (* # suffix, undecoded *)
}

and URLPath = URLPath of {
segs: Segment list,
absolute: bool
}

and Segment = Segment of {
part: string,
params: string list
}
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All of the parts in the URL are separated into fields in the URL type. I only
support HTTP URLs at the moment. The datatype allows room for
expansion. All of the HTTP URL syntax is supported but this is more
general than the server actually needs. For example the syntax allows
parameters to be attached to each segment in the URL path but you would
only expect to find parameters on the last segment in practice. The server
only ever expects to encounter absolute URL paths and never fragments.

I will only describe the API. The code is a lot of long-winded string
manipulation to break the URL at all the different kinds of delimiters. Here
is the signature for the API.

exception BadURL of string (* with a reason *)

val emptyURL: URL

(* This parses a general URL. It raises BadURL if the syntax
is not parsable as a HTTP URL.

*)
val parseURL: string -> URL

(* This parses just the path part of a URL, excluding the fragment.
It raises BadURL if the syntax is not parsable.

*)
val parseURLPath: string -> URLPath

(* This parses just a simple path which contains no parameters.
It raises BadURL if the syntax is not parsable.

*)
val parseSimplePath: string -> URLPath

(* This tests if two paths match, ignoring parameters. *)
val samePath: URLPath -> URLPath -> bool

(* This splits a path into a prefix of part names and a final name.
E.g. /a/b/c becomes SOME ([a,b], c) and / becomes NONE

*)
val splitPath: URLPath -> (URLPath * string) option

(* Convert back to a valid URL in string form.
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This introduces escapes etc. For now we only escape the
"reserved" character class. We could also escape the mark
characters for safety. Netscape does.

*)
val URLToString: URL -> string
val pathToString: URLPath -> string

(* This removes the % URL escapes from the string.
Bad escapes are passed through unchanged.

*)
val unescapeURL: string -> string

(* This escapes anything that is not an unreserved character in
the string.

*)
val escapeURL: string -> string

The parseURL function is the main interface. If the URL has an invalid
format then the BadURLexception is raised. This exception carries an error
message that the caller may choose to log. The parseURLPath function is
not currently used. The parseSimplePath function is for URL paths in the
node sections of the configuration file (see the section called The Node
Parameters in Chapter 8). A simple path does not allow parameters on a
path segment.

The URLToString function is the opposite of parseURL. It is used when
formatting headers and also in generating HTML. It must reintroduce
escaping for unsafe characters. The escapeURL and unescapeURL functions
take care of the escaping. The remaining functions are utilities of occasional
use.

Notes
1. It was inspired by the wset type in ML Server Pages from Moscow ML
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The aim of this book has been to demonstrate that functional languages, in
particular SML, can be used to build the kind of real-world projects that you
might ordinarily only think of using C or C++ for. In the following I will
discuss some of the lessons learned from developing the web server project in
SML/NJ. I’ll also point you at some related languages to look into.

SML/NJ vs Real-World Needs
To tackle real-world projects a language and its environment needs to:

• scale to large quantities of code;

• have the performance to handle real-world loads;

• interface with infrastructure such as databases, graphics etc.

Large-scale Development
Functional languages certainly scale to the size of real-world projects by
nature. The productivity improvement from a functional language allows a
programmer to tackle much larger projects. I estimate at least a 10 to 1
improvement in productivity over the C language just from a reduction in
the number of lines of code needed. There is a large productivity boost from
the absence of memory management bugs and the like that plague C
programs. Further the strong static type system often means that sizable
pieces of SML code just works first time.

The SML module system goes a long way towards managing large-scale code.
(But its inability to handle groups of mutually dependent modules is a
minus).
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Performance
Over the years computer scientists have developed many "very high level"
languages to help solve the "programming crisis" and improve programming
productivity. In the early stages of research they are usually interpreted
rather than compiled and the implementation is slow. Often they don’t
progress beyond the research stage. This leaves the impression that
advanced languages are by nature slow and not suitable for real-world use.
Unfortunately programmers are prone to myths about programming
languages and seldom revisit them.1

My experiments with the Swerve server in this book show that SML/NJ does
perform well. Without much trouble it achieved around 2/3 the speed of
Apache, which is written in C. Anecdotal evidence has it that C++ is about
1/2 the speed of C. The speed drop is mainly due to the excessive copying
encouraged by copy constructors and the overhead of virtual method calls.
Even a good Java implementation is slower again. This suggests that
SML/NJ can certainly compete with C++ or Java.

Having said that, there are still some performance issues that need to be
noted. In the section called Basic SML/NJ Performance in Chapter 7 I ran
some basic speed tests. The performance on inner loops and low-level byte
handling could do with some improvement. This speed loss is partially
compensated for by the much better heap performance. Other
implementations of SML such as the MLton compiler[MLton] work harder at
optimisation.

Infrastructure
The big impediment to wider use of SML in the real-world is support for
features such as databases, graphics, encryption, native languages (unicode),
true concurrency etc.

The standard basis library is looking rather dated. It hasn’t progressed in
years. A future release of SML/NJ will include a native C-language interface.
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This will allow your SML program to dynamically link to a shared library
and call its C API. It includes a tool that generates SML stubs for all of the
API functions found in the library’s header files. This will make it possible to
call libraries for database access, file encryption and compression etc. But I
think that the basis library will need further work to integrate this properly.
Personally I would like to see a plug-in mechanism for the SML/NJ run-time
to make it easier to extend.

The choice of a web server for this book neatly avoids the issue of database
programming. Web servers typically delegate this to CGI scripts which you
could write in Perl or PHP. SML/NJ desperately needs an ODBC-like
mechanism.

This book has been silent too on the matter of graphics programming. Image
handling (e.g. JPEG, PNG) needs access to standard libraries as described
above. To develop a GUI with SML/NJ you have a choice of the eXene
system, supplied with SML/NJ, or the SML/Tk package[SMLTK]. I haven’t
used eXene. It’s an experiment in designing a concurrent GUI toolkit for
CML. But I would prefer a more conventional look and feel such as Tk. But
SML/Tk is not written for a concurrent environment. Personally I consider
Concurrent ML to be a "killer" feature of SML/NJ. A GUI should be
multi-threaded for responsiveness. It’s a shame that CML is not built-in to
SML/NJ instead of being an add-on.

Related Languages
SML/NJ is not the only functional language I could have chosen to
demonstrate real-world programming.

The OCaml system[OCaml] is an implementation of a language in the ML
family. The language is different from Standard ML and a bit on the
experimental side for my taste. However it has recently seen much active
development in the area of infrastructure[OCamlTools]. For example for
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graphics it has interfaces to Tk, Gtk+ and OpenGL. There are interfaces for
the PostgreSQL and MySQL databases. If you’re wondering why I didn’t
choose OCaml for this book, it’s that much of this progress has been made
while I’ve been writing this book. You should certainly look into it.

An alternative in the lazy functional language arena is Haskell[Haskell].
Haskell compiles to machine code but its lazy evaluation tends to make it
run slower than SML/NJ. There is good infrastructure support especially if
you are programming on Microsoft Windows. It talks COM and CORBA. For
graphics there are interfaces for Tk and Gtk+. For databases there are
interfaces for PostgreSQL and MySQL and on Windows, ODBC.

To Finish
The bottom line is: yes you can nowadays develop real-world applications in
functional languages, getting leverage off of their special features such as
greater productivity and reliability. Try it out!

Notes
1. Here are some common ones. Lisp is slow. Optimising compilers have

been available for years. Ada is huge and bloated. What, C++ isn’t? C
must be efficient because you can program down to the bare metal. Nope,
its 1970s-vintage machine model no longer fits well with modern
computers.
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In this appendix I describe some of the resources available for learning SML
and SML/NJ in particular. The Standard ML of New Jersey home page
[SML] has links to these and more.

Books
The SML/NJ home page recommends two books: ML for the Working
Programmer[Paulson] and Elements of ML Programming[Ullman]. Both of
these address the 1997 revision of the language[Milner]. Earlier books only
cover the 1990 definition..

Of the two I’ve only read the Paulson book. It is aimed at the more
experienced programmer. It’s major worked programming example is a
simple mathematical theorem prover. This is based on the author’s
experience with the Isabelle theorem prover (see [SMLProjects]). You’ll also
find some focus on other top-shelf subjects such as lambda calculus and
formal reasoning about programming.

The Ullman book is an introductory book on programming with SML which
assumes no previous knowledge of functional programming. It focuses on
using the SML/NJ implementation.

Robert Harper has had tutorial notes on SML available for a number of
years. Recently he has expanded these into book form entitled Programming
in Standard ML. At the time of writing you can download a draft copy of the
book in PDF format from his home page at [HarperHome].

Tutorials
The tutorials available on the web vary a lot in their emphasis. The most
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comprehensive is by Robert Harper which is now in book form, cited above.

The tutorial by Peter Lee[LeeTut] is a set of notes aimed at beginning
students using the SML/NJ for the first time.

Mads Tofte has several sets of notes which emphasise using the module
system of SML. You will need to follow the links from the SML/NJ home
page to get these tutorials.

Andrew Cumming has a set of lessons entitled A Gentle Introduction to
ML[Cumming]. These are very introductory.
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Appendix B. Coping with the
Compiler’s Error Messages
Figuring out the error messages from the compiler can sometimes be the
hardest part of getting a program to run. The syntax errors are easy enough
but the type errors can be confusing even for experienced programmers. The
good news is that once you get your program past the type checker there is
often not much wrong with it. It’s not unusual for programs hundreds of
lines in length to just work the first time. The richness of the type system
and its enforcement provide logic constraints that keep out many common
programming errors.

Syntax Errors
The parser of the SML/NJ compiler uses error correction. This means that it
attempts to correct a syntax error so that it can continue compiling. This lets
it report more syntax errors in one run of the compiler. However the error
messages report the corrections that it made and you have to invert its logic
to figure out what your errors were.

The parser will attempt to either insert or delete one or more symbols to
produce syntactically correct input. Here is an example.

fun f x
let

val i = 1
in

i * i
end

syn1.sml:1.7 Error: syntax error: inserting EQUALOP

This says that on line 1 at character position 7 it inserted an equals symbol.
This was the right correction. Here’s a more notorious error.
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structure Main =
struct

fun f x =
let

val msg = "hello"
in

print msg;
print "\n";

end
end

syn2.sml:9.5 Error: syntax error: inserting EQUALOP

The semicolon in a sequence of expressions is only allowed between the
expressions. The one at the end of the last print is wrong. But the parser’s
correction is to insert something else after the semicolon to get it into an
internal position. Curiously, if the function is not inside a structure the
parser produces a slightly better error message: syntax error found at
END. If you leave out the semicolon between the prints this is not a syntax
error but you will get a type error.

Identifier Errors
In the terminology of SML an identifier is bound to some definition. If you
haven’t defined the identifier in an expression you will get a complaint about
an unbound variable. If the identifier is in a binding pattern then you might
have intended it to be a constructor from a datatype. Here are some
examples.

fun f cmd =
(

case cmd of
[] => ""

| (first::rest) => TxtIO.print frst
)

ubnd1.sml:5.24-5.35 Error: unbound structure: TxtIO in path TxtIO.print
ubnd1.sml:5.24-5.28 Error: unbound variable or constructor: frst
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Record Errors
The binding patterns that select record fields introduce ambiguities that
usually need some kind of explicit type constraint.

type Cmd = {
name: string,
data: int
}

fun show {name, ...} = print name

fun process cmd = print(#name cmd)

fun size ({data, ...}: Cmd) = data

rec1.sml:6.1-6.34 Error: unresolved flex record
(can’t tell what fields there are besides #name)

type4a.sml:8.1-8.35 Error: unresolved flex record
(can’t tell what fields there are besides #name)

The binding pattern in show is called a "flex record". It can match against
any record type that contains a field called name. But you aren’t allowed to
make a function polymorphic over all such record types so you have to
constrain its type as done in the size function. The field selector #name is
equivalent to the function (fn {name, ...} => name) so it has the same
problem.

I prefer to use a datatype for all record types. The constructor will serve to
constrain the type.

datatype Cmd = Cmd of {
name: string,
data: int
}

fun show (Cmd {name, ...}) = name
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Type Errors
The SML language is designed so that you can write your code without
having to declare each variable with its type. Ideally you should be able to
write no types anywhere and the compiler can figure out the type of each
expression entirely by context. The language comes very close to this ideal.
Only some ambiguities with overloaded numeric literals and record patterns
spoil it.

Type expressions in SML can be quite complex. If a function is polymorphic
then its type will feature type variables which will be tiresome to get
straight. Having the type checker figure them out for you is a big advantage.

The disadvantage of this design is that when there is a type error the cause
of the error can be very obscure. Where an identifier is used in several
locations in your program the type checker compares each location to see if
the use is consistent. For example if you use an identifier as the argument to
a function that takes a string and also to one that takes an integer then the
identifier can’t be both a string and an integer. You will have to decide which
one is wrong. If you use the identifier in a great many locations you may
have to inspect all of them to find out which one is incorrect.

When the type checker is studying your program it reads it from top to
bottom and decides on the type of an identifier from the first location it
encounters that supplies it with decisive information. Every following
location is checked against this type and if there is a mismatch then an error
is reported. If it happens that the first location is the wrong one then all of
the remaining locations will report errors.

The message that is generated for each type error will typically contain an
abstract of the offending source code and a report of two type expressions
that didn’t match. Usually the code is a function call and the mismatch is
between the expected type of the argument and the actual type of the
argument expression. To figure out the type error you have to compare the
two type expressions. They often contain internal type variables written like
’Z . A type variable will match with any type. Type variables with the same
letter in the same type expression must be the same type.

460



Appendix B. Coping with the Compiler’s Error Messages

Sometimes you will reach a point where the type checker insists that there is
an error at some location and you are sure that it’s not there but somewhere
else. A good strategy is to put in an explicit type constraint to point out to
the type checker what you think the type must be. The checker will then
point out any other locations that don’t match that type. You can put a type
constraint on any expression, including literals.

The following sections show some typical examples and what went wrong in
each case.

Simple Type Errors
The simplest error is an argument mismatch when the argument type is
obvious.

fun f() = print 3

type1a.sml:1.11-1.18 Error: operator and operand don’t agree [literal]
operator domain: string
operand: int
in expression:

print 3

The message talks about an operator, the function, and an operand, its
argument. The domain of an operator is the type that it expects. In this case
it expected a string and was given an int .

Distinguishing the operator and operand is harder with curried functions.

fun f() =
let

fun g(a, b) = a + b
in

foldl g 0.0 [1, 2]
end

type1b.sml:2.1-6.4 Error: operator and operand don’t agree [literal]
operator domain: real list
operand: int list
in expression:
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((foldl g) 0.0) (1 :: 2 :: nil)

Here the operator is the expression (foldl g 0.0) which must take a list
of reals for the final argument. The error is that a list of integers was
supplied. We can surmise that lists in square brackets are represented
internally in the compiler as applications of the list constructor operator :: .

If you leave out a semicolon in a sequence expression you will usually end up
with a type error. Here’s a simple example.

fun f x =
let

val msg = "hello"
in

print msg
print "\n"

end

type1c.sml:2.1-7.4 Error: operator is not a function [tycon mismatch]
operator: unit
in expression:

(print msg) print

To the compiler it looks like you are passing the print function as an
argument to the (print msg) expression. But this expression isn’t even a
function. Its type is unit .

If and Case Expressions
Some kinds of expressions don’t end up in the error report how they started
out in your code. Here’s a silly example with two calls to the function g.

fun f lst =
(

if length lst = 1
then

g print lst
else

g (fn s => (print s; print "\n")) (*lst*)
)
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and g printer lst = app printer lst

type2a.sml:2.1-8.2 Error: types of rules don’t agree [circularity]
earlier rule(s): bool -> ’Z
this rule: bool -> ’Y list -> ’Z
in rule:

false => g (fn s => (<exp>; <exp>))

The if expression becomes a case expression internally so that (if b
then x else y) becomes (case b of true => x | false => y) .
The source position in the message covers the range of the lines of the if
expression.

The two cases are called rules. Each rule is treated like a function from the
type of the case argument (here bool ) to the type of the case result (here
represented as the unknown type ’Z ). The type checker has a problem with
the else part. The expression still needs an extra argument of type ’Y
list before it can return the case’s type. This is because I forgot the lst
argument.

The type checker uses the term "object" for the expression after the case
keyword. Here is an example of a mismatch with the rules.

fun process (cmd: string) inp =
(

case cmd of
[] => []

| (last::rest) =>
(

print last;
app print rest;
inp

)
)

type2b.sml:3.5-11.3 Error: case object and rules don’t agree [tycon mismatch]
rule domain: string list
object: string
in expression:

(case cmd
of nil => nil
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| last :: rest => (print last; (app <exp>) rest; inp))

The rules clearly want a list of strings but there is an erroneous type
constraint that says that cmd must be just a string.

Non-local Type Errors
Here’s an example of a type error that propagates through a couple of levels
of function call.

fun run() = print(process "stop")

and process cmd =
(

case cmd of
"go" => go()

| _ => stop()
)

and go() = (3, "done")
and stop() = (4, "stopped")

type3a.sml:1.1-12.28 Error: right-hand-side of clause doesn’t
agree with function result type [tycon mismatch]

expression: int * string
result type: string
in declaration:

go = (fn () => (3,"done"))
type3a.sml:1.1-12.28 Error: right-hand-side of clause doesn’t
agree with function result type [tycon mismatch]

expression: int * string
result type: string
in declaration:

stop = (fn () => (4,"stopped"))

The expected result type for the go and stop functions is determined to be
string from the call to print in the first line. The error messages report the
entire group of functions that are joined by the and keyword which doesn’t
localise the error much. If the run function comes last then the error is
localised better.
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fun process cmd =
(

case cmd of
"go" => go()

| _ => stop()
)

and go() = (3, "done")
and stop() = (4, "stopped")

fun run() = print(process "stop")

type3b.sml:11.13-11.34 Error: operator and operand don’t agree [tycon mismatch]
operator domain: string
operand: int * string
in expression:

print (process "stop")

Alternatively you can put a type constraint in a function declaration to break
up the type propagation. This makes it clearer to the compiler and to anyone
reading the code what is expected.

fun run() = print(process "stop")

and process cmd: int * string =
(

case cmd of
"go" => go()

| _ => stop()
)

and go() = (3, "done")
and stop() = (4, "stopped")

type3c.sml:1.13-1.34 Error: operator and operand don’t agree [tycon mismatch]
operator domain: string
operand: int * string
in expression:

print (process "stop")
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In this appendix I describe how to download and install SML/NJ version
110.0.7 This is the latest stable version at the time of writing. You will be
installing from the source files. You can get RPMs for Linux but these won’t
include the source, which is very useful. It’s quite easy and fast to install it
from source. My installation is on RedHat 7.1 Linux with the GCC 2.96
compiler.

A characteristic of the installation is that the installed files will end up in
the same directory tree as the source files. So you must unpack the source in
the place where you want the installed files to go.

To start, go to the SML/NJ home page. This is at

http://cm.bell-labs.com/cm/cs/what/smlnj/index.html

There is an FTP site at Sourceforge but I’ve found the Bell Labs site to be
the most reliable. Follow the link "Downloading SML/NJ Software for Unix
or Windows". This has a link to some on-line installation instructions.

1. Create a directory on your computer where you will install the SML/NJ
system. The installation instructions call this SMLROOTand recommend
a path like /usr/local/sml 1. I recommend using a subdirectory for the
version e.g. /usr/local/sml/110.0.7 and a symbolic link
/usr/local/sml/current to point to it. This will allow you to try out
new versions. You use the current name in your CM files.

2. In the SMLROOT directory download the following files. These are for
Intel x86 architecture on Unix. Use the FTP links. Don’t download the
Concurrent ML package from this page.

config.tar.Z Installation scripts
runtime.tar.Z Runtime system
cm.tar.Z Compilation Manager
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bin.x86-unix.tar.Z for Intel Pentium processors running UNIX

smlnj-lib.tar.Z Standard ML of New Jersey Library
ml-lex.tar.Z ML-Lex lexical analyzer generator
ml-yacc.tar.Z ML-Yacc parser generator
ml-burg.tar.Z ML-Burg code-generator generator
sml-nj.tar.Z Source code for SML/NJ compiler

You probably won’t use ML-Burg but the installation script assumes that
you have it. The compiler source file is useful for the source of the Basis
library, which is in its boot subdirectory.

3. If you go back to the SML/NJ home page you can follow the links to the
Concurrent ML page. In its "What’s new" section there is a link to a
directory containing a patched version. The link is

ftp://ftp.research.bell-labs.com/dist/smlnj/packages/cml

Download the latest.tar.gz file into the SMLROOTdirectory renaming
it to cml.tar.Z . This will work as long as the zcat program on your
computer is actually from the Gnu gzip package (which it is on Linux).
The install script expects the .Z suffix.

4. In the SMLROOT directory unpack the config.tar.Z file.
zcat config.tar.Z | tar -xf -

This will create a subdirectory called config .

5. Edit the config/targets file to comment out the following line.
TARGETS="$TARGETS eXene"
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You won’t need this for any of the examples in this book. You might be
interested to read the eXene documentation so you could download the
tar file later.

6. In the SMLROOTdirectory, NOT the config subdirectory, do
sh config/install.sh

This will compile and install everything. The tar files will be unpacked
into a src subdirectory. The SML compiler is in the bin subdirectory.
The CM files are in the lib subdirectory. You can delete the tar files.

The compilation process first compiles the run-time. This is a normal C
language compilation using make. I get lots of warnings from the
X86.prim.asm file but this doesn’t cause a problem.

Next the compiler is built from its bin files. You will see lots of messages
like [Loading core.sml.bin] . Then the various packages are
compiled and installed. These produce the usual SML compiler blurb
with lots of GC messages.

The CMfiles in the SMLROOT/lib directory are just aliases for files in the
SMLROOT/src directory. The compiled binary files are saved in CM
subdirectories in the source directories so you can’t delete them. The aliases
(and the configuration manager) use absolute paths so you can’t move them.
This rigidity has been addressed in later versions of the SML/NJ system.

You can update a package in the system, other than CM and the compiler, by
just replacing the source directory with the new version and compiling in its
source directory (where the sources.cm file is) in the usual way. With care
you can make some changes to the run-time and recompile it without having
to rebuild anything at the SML level. Look at the install script for the
commands to make the run-time.
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Notes
1. I use /src/smlnj and this path appears in all of my examples
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Blurb

This is any text of little value or interest.

CM

This stands for the SML/NJ Compilation Manager. It also refers to the
input files used by the manager.

CML

This is the Concurrent ML library. It adds operations for concurrent
programming to SML/NJ.

continuation

A continuation is a virtual function that represents the rest of the
computation of the program. By virtual I mean that it is behaves like a
function that can be called from SML but underneath it just represents
a transfer of control to other parts of the program.

copy by reference

When a data object is copied by reference the object itself is not
duplicated. Instead a pointer to it is created. The copy and the original
share the same memory locations. A change made to the original will
result in the copy changing too.

See Also: copy by value.
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copy by value

When a data object is copied by value the object itself is duplicated. The
copy and the original occupy different memory locations. A change made
to the original will not result in a change to the copy.

See Also: copy by reference.

currying

This refers to how a function with multiple inputs can be treated as a
cascade of functions each called with a single input. For example the
expression (f a b) means (g b) where g = (f a) .

datatype

This is a kind of type declaration in SML. It plays the role of
enumeration and union types of C or C++.

dynamic

This refers to any information that cannot be known about a program
until it is running. The information depends on the data it is processing.

See Also: static.

finalisation

This is a post-processing step applied to a data object after it has been
collected by the garbage collector. For example a file object should be
finalised by closing it since it can no longer be used by the program.

See Also: garbage collector.
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functional programming

This style of programming proceeds by computing new values from
existing values without changing any of the existing values.

See Also: imperative programming, pure function.

functor

This is a generic module in SML. It can be thought of as a function that
generates a structure from one or more input structures.

See Also: generic, module, structure.

garbage collector

This is a part of the SML/NJ run-time that locates data objects that can
no longer be used and makes their memory available for reuse.

generic

A piece of code is generic if it can be easily customised in the language to
different kinds of input. This is similar to the idea of polymorphism but
it handles a wider variety of kinds. The functor is the mechanism in
SML for writing generic code. Templates are the corresponding
mechanism in C++.

See Also: functor.

immutable

A variable is immutable if the value it represents can never change.
This is normal for functional programs. In imperative programs
variables are normally mutable.

See Also: functional programming.
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imperative programming

This style of programming proceeds by altering values stored in
variables.

See Also: functional programming, sneak path.

lex

This is the traditional lexical scanner generator available on Unix.

See Also: yacc.

live data

Any piece of data that can still be used by the program is called live.
Dead data will eventually be collected by the garbage collector.

See Also: garbage collector.

mickey-mouse

A toy example.

module

In SML this refers to either a structure or a functor. The compiler
compiles modules separately.

See Also: structure, functor.

monomorphic

A function is monomorphic if it only operates on data of one type. For
example the String.concat function only concatenates lists of strings.

See Also: polymorphic.
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polymorphic

A function is polymorphic if it performs the same operation on a family
of types. For example the List.length function determines the length
of any list without regard to the type of its elements.

See Also: monomorphic.

primitive

This refers to something at the lowest level of detail; elemental. For
example to a program, addition is a primitive operation of the hardware.
Although from the point of view of the hardware it may be complex.

pure function

A pure function always produces the same result for the same explicit
inputs. Its behaviour is not dependent on some program state that can
vary between calls to the function.

See Also: functional programming.

reference type

This is a kind of type in SML. Values of this type are mutable variables.

run-time

This refers to the part of the SML/NJ system that is written in C and
shared by all SML/NJ programs.

SML

This is an abbreviation for Standard ML.
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See Also: SML/NJ, CML.

SML/NJ

This is the New Jersey implementation of the Standard ML language.

See Also: SML.

stdin, stdout, stderr

These are the predefined UNIX file descriptors: standard input,
standard output and standard error.

signature

In SML this is a collection of declarations for types and values that a
structure exports to the rest of the program.

sneak path

This is what I call it when two parts of a program communicate by
reading and writing a shared variable in some obscure way. An example
in C would be if two functions in different files passed data through a
global variable.

static

This refers to any information that is known about a program before it
is run.

See Also: dynamic.
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strong pointer

This is a pointer (or reference) to a data object that is taken seriously by
the garbage collector. If an object has one or more strong pointers to it
then is considered to be live.

See Also: weak pointer, live data.

structure

In SML this is a named collection of declarations.

See Also: module, functor.

tuple

In SML, this is a group of anonymous data values travelling together.
The word is a generalisation of the sequence: couple, triple, quadruple,
quintuple, sextuple etc.

weak pointer

This is a pointer (or reference) to a data object that is not taken
seriously by the garbage collector. If an object only has weak pointers to
it then it is no longer considered to be live.

See Also: live data, strong pointer.

yacc

This is the traditional parser generator available on Unix. The name
stands for Yet Another Compiler Compiler. A compiler compiler is a
mythical tool that generates a compiler for a programming language
given a description of the language. They were a hot topic in computer
science in the 1960s and 1970s.

See Also: lex.
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