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ABSTRACT
Contification is a compiler optimization that turns a func-
tion that always returns to the same place into a continua-
tion. Compilers for functional languages use contification to
expose the control-flow information that is required by many
optimizations, including traditional loop optimizations.
This paper gives a formal presentation of contification in

MLton, a whole-program optimizing Standard ML compiler.
We present two existing algorithms for contification in our
framework, as well as a new algorithm based on the domina-
tor tree of a program’s call graph. We prove that the dom-
inator algorithm is optimal. We present benchmark results
on realistic SML programs demonstrating that contification
has minimal overhead on compile time and significantly im-
proves run time.

1. INTRODUCTION
Compiler writers for traditional imperative languages can

choose from a vast array of well-understood optimizations to
improve the quality of generated code. To avoid reinventing
the wheel, compiler writers for functional languages should
use these known techniques, or variants of them, whenever
possible. In order to do this, they should use intermediate
languages (ILs) that allow traditional optimizations to be
applied with minimal changes. They should also ensure that
their compiler translates source programs into the IL in a
way that makes traditional optimizations applicable.
Traditional optimizations [1, 19] such as common-subex-

pression elimination, loop-invariant code motion, and global
register allocation operate on a control-flow graph that rep-
resents intraprocedural information. Many traditional opti-
mizations can be implemented efficiently using Static Single-
Assignment form (SSA) [8], a convenient representation of
def-use information in control-flow graphs. In contrast to
traditional compilers, functional-language compilers typi-
cally use a λ-calculus based IL like Continuation-Passing
Style (CPS) [2] or A-normal form [11]. Fortunately, the con-
trast is not as large as it would seem. It has been shown that
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functional programs and CPS are closely related to SSA [4,
14]. It is even possible to translate between a subset of CPS
and SSA [14].
Functional languages use function calls to express all

control-flow, including loops. In order to apply traditional
optimizations, a functional language compiler must trans-
late function calls in the source program into an IL that
exposes the same intraprocedural control-flow information
that is available in traditional SSA form. In particular,
recursive functions used to implement loops in the source
should be recognizable as loops in the IL. Section 8 of [14],
which describes how to translate from CPS to SSA, contains
the key to exposing intraprocedural control-flow information
in functional languages.

The idea is to find a set of procedures all of
which are always called with the same contin-
uation, and then to substitute that continuation
for the procedures’ continuation variables. The
procedures are then themselves continuations.

What this means is that if a function always returns to the
same place, then that function’s calls and returns can be
viewed as describing intraprocedural instead of interproce-
dural control-flow. As an example, consider the following
functions:

fun g y = y - 1

fun f b = (if b then g 13 else g 15) + 1

and their translation into CPS:

fun g (y, k) = k (y - 1)

fun f (b, k) =

let fun k’ (x) = k (x + 1)

in if b then g (13, k’) else g (15, k’)

end

The declaration of k’ defines a continuation that increments
its argument and passes the result to the continuation of
f. Since g’s continuation is always k’, we can transform g

into a continuation within f and eliminate the continuation
argument from the definition of g and from calls to g.

fun f (b, k) =

let fun k’ (x) = k (x + 1)

fun g (y) = k’ (y - 1)

in if b then g (13) else g (15)

end

This transformation exposes intraprocedural control flow in-
formation (g now directly calls k’), and enables subsequent
optimization, such as inlining k’.
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In this paper, we coin the term contification to mean turn-
ing functions into continuations. We also use the verb con-
tify. Contification (under various names) has been used in
functional-language compilers for over ten years [15] and has
recently received attention in compilers for Dylan [20] and
Moby [21]. Contification is also used in MLton [18], a com-
piler for Standard ML. A simple form of contification, tail-
call optimization [19], has been used in traditional compilers
for decades.
This paper gives a formal presentation of contification in

MLton. First, we present an overview of the MLton compiler
and of FOL, the first-order intermediate language on which
contification is performed. Next, we formalize contification
as the combination of an analysis and a transformation. Our
framework allows a variety of analyses, and defines a single
transformation that works for any of them. An analysis de-
termines which functions in the program can be viewed as a
continuation and the continuations to which they always re-
turn. The transformation uses the results of the analysis to
rewrite the program, turning functions into continuations.
The main contribution of the paper is the presentation of
analyses derived from the algorithms used in a previous ver-
sion of MLton and in the Moby compiler, as well as a new
contification analysis that uses the dominator tree of a pro-
gram’s call graph. We prove that the dominator analysis is
optimal, in the sense that it contifies any function that is
contifiable by any other approach expressible in our frame-
work. Finally, we describe an implementation of all of these
algorithms as part of MLton, and provide measurements of
their running time and effectiveness.

2. MLTON
This section presents an overview of MLton and describes

where contification fits in the compilation process. MLton
is a whole-program optimizing compiler for SML where the
main focus has been the generation of efficient code. It does
not support separate compilation. MLton is freely available
under the GPL from http://www.sourcelight.com/MLton.
There is a large gap between SML and traditional ILs that

use control flow because of SML features like parametric
modules, polymorphism, and first-class functions. MLton
relies on having the whole program to translate these fea-
tures into a simply-typed first-order intermediate language,
FOL, that is similar to SSA. MLton performs most opti-
mizations on FOL, including contification.
We now describe the relevant compiler passes of MLton.

First, MLton eliminates module level constructs from the
input SML program. It removes all uses of structures and
signatures by moving declarations to the top level and ap-
propriately renaming variables. It removes functors by ap-
plying them at compile time, duplicating their bodies for
each use [10]. This produces a program in a polymorphic,
higher-order IL (the XML of [12]). Next, MLton eliminates
polymorphism by duplicating each polymorphic expression
for each monotype at which it is used. This produces a
program in a simply typed, higher-order IL.
MLton then performs a monovariant whole-program flow

analysis [13] to determine where each function could be
called. MLton uses the results of the flow analysis to elim-
inate higher-order functions by the closure conversion al-
gorithm described in [6]. First-class functions become data
structures and calls to parameters of functional type become
ordinary function calls, possibly preceded by a case dispatch.

c ∈ Const
p ∈ Prim
k ∈ Cont
x ∈ Var
f ∈ Func

P ::= let fun f(�x) = e . . . in fm() end

e ::= let val x = s in e end
| let cont k(�x) = e . . . in e end
| k(�x)
| if x then k1() else k2()
| f(�x)
| k(f(�x))
| �x

s ::= c
| x
| (�x)
| #i x
| p(�x)

Figure 1: FOL syntax

The resulting program is in FOL, and is simply typed and
first order. Next, MLton performs optimizations including
contification.
All of MLton’s ILs up to and including FOL are typed

ILs [22]. All of the transformations and optimizations to
this point, including contification, take well-typed programs
as input and produce well-typed programs as output. In
debugging mode, MLton runs a type checker on each IL
after each optimization. After FOL optimization, MLton
translates to a low level untyped IL, and then into C or
native x86 instructions.
MLton is similar in structure to Tolmach and Oliva’s

RML-to-3GL translator [24]. However, this structure dif-
fers from that of most other functional language compilers
such as Orbit [16], SML/NJ [2], and TIL [22] in three crucial
ways. First, MLton is a whole-program compiler. This en-
ables certain optimizations like monomorphisation and en-
sures that all optimization passes have access to more infor-
mation. Second, MLton performs closure conversion early
in the compilation process, before most optimization occurs.
As a consequence, optimizations (including contification)
operate on a very simple IL that is closer to more tradi-
tional ILs. Third, MLton uses whole-program flow analysis
to drive closure conversion, and the results are expressed di-
rectly in FOL. Thus, optimizations (including contification)
benefit from the control-flow information computed by the
analysis. Optimizations need not recompute control flow
information as is done in many analyses (e.g. [25]). Nor
do they need to introduce imprecisions based on “escaping”
functions, as is done in [21].

3. FOL
This section describes a slightly simplified version of

MLton’s FOL (exception handling constructs are omitted)
and gives some examples of contification. FOL is very sim-
ilar to Tolmach and Oliva’s “First-order SIL with jump
points” [24], which they use as the target language for tail
recursion elimination. Figure 1 presents the syntax of FOL,
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which is lexically scoped, first order, and simply typed. We
do not present the typing rules. We assume mutually dis-
joint sets of constants Const, primitives Prim, continuation
labels Cont, variables Var, and function names Func. A pro-
gram P declares a collection of mutually recursive functions
and calls a distinguished nullary main function fm. Func-
tions can take multiple arguments and return multiple re-
sults. We use �x to indicate a sequence of variables. We
assume all variable, function, and continuation names are
unique.
An expression e either binds a simple value, declares a con-

tinuation, or transfers control to another expression. Simple
values are constants, variables, tuples, selections from tu-
ples, or applications of primitives. The syntax cont k(�x) = e
declares continuation k with arguments �x and body e. Con-
tinuations can be declared simultaneously, in which case
they are mutually recursive. Every expression finishes by
transferring control, either via a jump to a local continu-
ation k(�x), an if-then-else, a tail call f(�x), a nontail call
k(f(�x)), or a return to its caller.
To keep our examples easy to read, we assume the ex-

istence of needed constants and primitives, write primitive
applications in infix notation, and elide val bindings for con-
stants and primitive applications. The example from Sec-
tion 1 would be written in FOL as follows.

fun g (y) = y - 1

fun f (b) =

let cont k’ (x) = x + 1

cont l1 () = k’ (g (13))

cont l2 () = k’ (g (15))

in if b then l1 () else l2 ()

end

FOL is similar to SSA in the manner described in [4]. An
FOL continuation declaration cont k(�x) = e is like a basic
block with label k that executes the sequence of val bindings
in e and transfers control according to the last expression
in e. There two differences between SSA and FOL are that
FOL uses lexical scoping to enforce the SSA condition that
a variable definition dominate all of its uses and that FOL
uses continuation call k(�x) to express the φ function that
assigns the actuals �x to the formals of k.
FOL is also similar to CPS, although this may not be ap-

parent at first sight. After all, FOL has returns and nontail
calls, and functions are not passed continuations as argu-
ments. However, these are only minor syntactic differences,
as was observed in [11]. The above example might be writ-
ten in more traditional CPS as follows.

fun g (y, k) = k (y - 1)

fun f (b, k) =

let cont k’ (x) = k (x + 1)

cont l1 () = g (13, k’)

cont l2 () = g (15, k’)

in if b then l1 () else l2 ()

end

In FOL, the only use of continuations passed as arguments to
functions would be to return as in k (x + 1) or in tail calls,
which are not shown above. Also, FOL nontail calls such as
k’ (g 13) exactly correspond to traditional CPS tail calls
with a nontrivial continuation g (13, k’), thus explaining
our choice of the cont keyword. The FOL syntax simply
elides redundant places where a continuation variable might

be written (formal parameter, return, tail call) and writes
nontail calls in a different order.
Continuing with the example in FOL, the result of conti-

fying g within f would look like the following.

fun f (b) =

let cont k’ (x) = x + 1

cont g (y) = k’ (y - 1)

cont l1 () = g (13)

cont l2 () = g (15)

in if b then l1 () else l2 ()

end

Contification has transformed nontail calls to the function g
into jumps to the continuation g. As a final example, here
is an SML function to sum the elements in a vector.

fun sum (v) =

let fun loop (i, s) =

if i = length (v)

then s

else loop (i + 1, s + sub (v, i))

in loop (0, 0)

end

Here are the FOL functions that MLton would produce.

fun sum (v) = loop (v, 0, 0)

fun loop (v’, i, s) =

let cont l1 () = s

cont l2 () = let val x = sub (v’, i)

in loop (v’, i + 1, s + x)

end

val n = length (v’)

in if i = n then l1 else l2

end

Contifying loop within sum yields the following, which dem-
onstrates how recursive continuations express loops.

fun sum (v) =

let cont loop (v’, i, s) =

let cont l1 () = s

cont l2 () = let val x = sub (v’, i)

in loop (v’, i + 1, s + x)

end

val n = length (v’)

in if i = n then l1 else l2

end

in loop (v, 0, 0)

end

Although contification may appear to be like inlining, it is
different. Inlining a function replaces a call to a function by
its body, substituting actual arguments for formal param-
eters. On the other hand, contification does not duplicate
code – it only moves code from one place to another, ex-
posing control-flow information. Contification of the above
example exposes the information that both the inner and
outer call to loop always return to sum.
From the above example, contification might appear to

be a “clean-up” optimization that is undoing the effects of
MLton’s previous conversion of the program into FOL. Af-
ter all, contification has just moved loop back inside sum

after closure conversion took it out. Nevertheless, once we
explain the semantics of FOL in the next section, we can
show that contification is expressing a nontrivial fact about
the program needed in order to perform some optimizations,
and is independent of closure conversion.
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v ∈ Value = Const +Value∗

ρ ∈ Env = Var→ Value
κ ∈ Stack = (Cont × Env)∗
s ∈ State = Exp × Env× Stack

−→ ⊆ State × State

(const) 〈let val x = c in e end, ρ, κ〉 −→ 〈e, ρ[x→ c], κ〉
(var) 〈let val x = y in e end, ρ, κ〉 −→ 〈e, ρ[x→ ρ(y)], κ〉
(tuple) 〈let val x = (�y) in e end, ρ, κ〉 −→ 〈e, ρ[x→ ρ(�y)], κ〉
(select) 〈let val x = #i y in e end, ρ, κ〉 −→ 〈e, ρ[x→ πi(ρ(y))], κ〉
(primapp) 〈let val x = p(�x) in e end, ρ, κ〉 −→ 〈e, ρ[x→ δ(p, ρ(�x))], κ〉
(cont) 〈let cont k(�x) = e . . . in e′ end, ρ, κ〉 −→ 〈e′, ρ, κ〉
(jump) 〈k(�x), ρ, κ〉 −→ 〈e, ρ[�y → ρ(�x)], κ〉 cont k(�y) = e ∈ P
(if-true) 〈if x then k1() else k2(), ρ, κ〉 −→ 〈e, ρ, κ〉 ρ(x) = true and cont k1() = e ∈ P
(if-false) 〈if x then k1 else k2, ρ, κ〉 −→ 〈e, ρ, κ〉 ρ(x) = false and cont k2() = e ∈ P
(tail) 〈f(�x), ρ, κ〉 −→ 〈e, [�y → ρ(�x)], κ〉 fun f(�y) = e ∈ P
(nontail) 〈k(f(�x)), ρ, κ〉 −→ 〈e, [�y → ρ(�x)], 〈k, ρ〉 :: κ〉 fun f(�y) = e ∈ P
(return) 〈�x, ρ, 〈k, ρ′〉 :: κ〉 −→ 〈e, ρ′[�y → ρ(�x)], κ〉 cont k(�y) = e ∈ P

Figure 2: FOL operational semantics

In the remainder of this paper, we write program frag-
ments in which we show declarations and calls of relevant
functions, but elide continuation declarations. We will al-
ways write the full expression for a control transfer, distin-
guishing between tail and nontail calls. For example, in the
following program fragment, fm includes a nontail call to f
and a tail call to g.

fun fm () = ... k (f ()) ... g () ...

fun f () = ... f () ...

fun g () = ...

3.1 Operational semantics
Figure 2 presents an operational semantics for programs in

FOL via a transition relation −→, written in infix. Techni-
cally speaking, −→ is dependent on the program and should
be written −→P , but since the program is always clear from
context, we will drop the P . Values v are either constants
or tuples of other values. An environment ρ is a map from
variables to values. We write ρ[x → v] to denote the envi-
ronment ρ′ such that ρ′(x) = v and ρ′(y) = ρ(y) if y 	= x.
We extend this notation to sequences of variables and val-
ues as in ρ(�x) and ρ[�x→ �v], in which the sequences �x and �v
must be of the same length. A state 〈e, ρ, κ〉 corresponds to
the evaluation of expression e in environment ρ with a stack
of callers κ to which e should return when done. A stack
is a sequence of frames written with an infix cons operator
as 〈k, ρ〉 :: κ, where 〈k, ρ〉 is the top frame on the stack and
κ is the rest of the stack. We write fun f(�x) = e ∈ P or
cont k(�x) = e ∈ P to mean that the function or continuation
declaration is in the program P .
The rules for simple expressions (const, var, tuple, select,

and primapp) are all straightforward – each adds a binding
to the environment and continues with the rest of the ex-
pression. The primapp rule assumes the existence of a func-
tion δ : Prim×Value∗ → Value, which defines the meaning
of primitives. The rule for a continuation declaration does
nothing, since continuations are just labels. The rules for
local control flow transfers (jump, if-true, if-false) switch to

the body of the desired continuation, possibly modifying the
current environment. The rules rely on on the fact that all
variable names are distinct in order to avoid capture of free
variables in continuations. The rules for function call (tail
and nontail) switch to the body of the desired function in
a new environment, binding only the formal parameters of
the function. The nontail rule adds a frame to the stack; the
tail rule does not. The return rule pops the top frame off
the stack, and continues with the expression corresponding
to the continuation on the top frame.
The transition rules bring out an important difference be-

tween continuations and functions. Jumps to continuations
maintain in the current environment while function calls
(tail and nontail) create a new environment. Also, unlike
traditional CPS, no closure needs to be created for a contin-
uation, since its free variables can be found in the current
environment (section 5.3 of [15]). The reason that continua-
tions do not need their own environment is that the syntax
of FOL guarantees that the environment at their point of
definition always coincides with the environment at a point
of use. Therefore, one can represent the environment as a
stack frame and think of FOL variables as stack slots and
continuations as basic blocks. With this in mind, we can
see that the effect of contification is to turn function calls
into jumps, thus exposing intraprocedural control-flow in-
formation. Also, when a function g is contified within a
function f , it will be able to share the same stack frame
with f . Finally, invocations of the contified function can be
optimized as intraprocedural control-flow transfers, where
live variables can be passed in registers, rather than as in-
terprocedural control-flow transfers, where standard calling
conventions must be followed.
With the semantics in hand, we can now see that in the

loop example of the previous section, contification expresses
the fact that loop always returns to sum. Hence, it can be
implemented as a loop that shares the same stack frame as
sum. The fact that loop always returns to sum is apparent in
the source program, because loop always calls itself in tail
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position and there is only one outer call. This information is
neither obscured nor clarified by MLton’s translation of the
source program into FOL. In fact, the contification analysis
in Section 5.1 uses exactly that reasoning to contify loop.
It is possible to perform contification analysis on the

source program, before closure conversion. However, in do-
ing so one would encounter two problems: what to do about
higher-order functions and how to express the results of the
analysis. The first problem could be solved by introducing
imprecision into the analysis whenever higher-order func-
tions obscure control flow or by doing control-flow analysis
along with contification. In MLton, we take the approach of
performing control-flow analysis before contification, thus
making its results available to contification. The second
problem could be solved by annotating the program with the
results of contification analysis in some way. This then leads
to the question of how subsequent optimizations would use
the annotation. We do not take this approach in MLton. As
a practical matter in compiler construction, we find it easier
to use an analysis if its results are expressed not as an an-
notation on the source program but instead via a program
transformation into an IL whose semantics directly reflect
the results of the analysis. Thus, in MLton and in this pa-
per, we use contification analysis to transform the program
into FOL, which has a very different semantics for function
call versus continuation call.

4. CONTIFICATION
In this section, we present the two components of contifi-

cation: analysis and transformation. A contification analy-
sis specifies what is contified, and where. The transforma-
tion rewrites the program based on the analysis. To simplify
the presentation, we abstract from FOL and represent a pro-
gram by its call graph. A program P = (fm,N,T) consists
of a main function, a multiset of nontail calls, and a multiset
of tail calls. A nontail call consists of a caller, callee, and
a continuation. A tail call consists of a caller and a callee.
Formally, we have the following, where we write M(S) for
the set of all multisets of S.

P ∈ Program = Func×M(Nontail )×M(Tail )
Nontail = Func× Func × Cont
Tail = Func× Func

For each k ∈ Cont, there is a unique f ∈ Func such that k
is declared in the body of f ; we write this f as D(k). We
define the predicate R : Func→ Bool such that R(f) if and
only if there is a path of calls from fm to f in P .

4.1 Analysis
An analysis is a map from functions to abstract return

points.

ρ ∈ Return = {Uncalled,Unknown} ∪ Cont ∪ Func
A ∈ Analysis = Func→ Return

The following table describes the intended meaning of A(f),
for f ∈ Func.

A(f) Meaning
Uncalled f is never called during evaluation of P
k ∈ Cont f always returns to continuation k
g ∈ Func f always returns to function g
Unknown f returns to multiple k’s and/or g’s

The meaning of A(f) = k is that whenever the body of f
is evaluating, the top frame on the stack will have k as its
continuation. The meaning of A(f) = g is that g is always
responsible for calling f , either directly or through an inter-
vening sequence of tail calls. We do not allow analyses to
express information about sets of continuations other than
to use Unknown, which represents the set of all continua-
tions.
The contification transformation uses an analysis A as fol-

lows. The transformed program has as its functions those f
with A(f) = Unknown. Functions with A(f) = Uncalled
are removed from the program. Functions with A(f) ∈
Cont ∪ Func are contified in other functions. For g ∈ Func,
the functions f such that A(f) = g are contified as the first
declaration in the body of g. For k ∈ Cont, the functions f
such that A(f) = k are contified in D(k) as the first decla-
ration after the declaration of k.
We now introduce a condition on an analysis that ensures

it will lead to a sensible transformation.

Definition 1. An analysis A is safe for a program P =
(fm,N,T) if all of the following hold.

∗1 if ¬R(f), then A(f) = Uncalled.

∗2 A(fm) = Unknown.

∗3 for all nontail calls (f, g, k) ∈ N,
if R(f) then A(g) ∈ {k,Unknown}.

∗4 for all tail calls (f, g) ∈ T with f 	= g,
if R(f) then A(g) ∈ {f,A(f),Unknown}.

Another way to think of safety is that it ensures that the
analysis conservatively approximates the actual run time be-
havior of the program, in the sense of abstract interpreta-
tion [7]. Condition ∗1 forces unreachable functions to be
marked Uncalled, which causes the transformation to remove
them from the program. We need ∗1 to ensure that the
transformation is well-defined. Condition ∗2 forces the main
function to be marked Unknown, which prevents it from be-
ing contified. Condition ∗3 forces the callee of a nontail call
to return to the continuation of the call or be Unknown. Con-
dition ∗4 forces the callee of a tail call to return to the caller,
have the same continuation as the caller, or be Unknown.
In the remainder of this paper, we will drop the phrase “for

a program P” from definitions and theorems. Any two anal-
yses mentioned in the same context will be considered anal-
yses for the same program. The following lemma shows that
a safe analysis never labels a reachable function Uncalled.

Lemma 1. If A is a safe analysis, then ¬R(f) iff A(f) =
Uncalled.

Although we can transform a program based on any safe
analysis, there are many safe analyses with a wide range of
utility. For example, the following trivial analysis is safe.

ATriv(f) =

{
Uncalled if ¬R(f)
Unknown if R(f)

The transformation based onATriv fails to do anything other
than eliminate dead code. In order for the transformation to
be useful (i.e., actually contify functions), it must be based
on an analysis A with A(f) 	= Unknown. Hence, we are
motivated to search for an analysis where A(f) 	= Unknown
for as many functions as possible. This leads us to introduce
the definition of a maximal analysis.
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P : Program → Program
P(let {fun fi(�xi) = ei | i ∈ I} in fm() end) =

let {fun fi(�xi) = F(fi,⊥) | i ∈ I and A(fi) = Unknown} in fm() end

F : Func × Cont⊥ → Exp
F(g, k) = let {cont K(f)(�x) = F(f, k) | A(f) = g and fun f(�x) = e′ ∈ P} in E(e, k) end

where fun g(�x) = e ∈ P

E : Exp × Cont⊥ → Exp
E(let val x = s in e end, k) = let val x = s in E(e, k) end
E(let {cont ki(�xi) = ei | i ∈ I} in e end, k) = let {cont ki(�xi) = E(ei, k) | i ∈ I} ∪⋃

i∈I {cont K(fij)(�xij) = F(fij , ki) | j ∈ Ji}
in E(e, k)
end
where for all i ∈ I, {fij | j ∈ Ji} = {f | A(f) = ki}
and for all j ∈ Ji, fun fij(�xij) = eij ∈ P

E(k(�x), k) = k(�x)
E(if x then k1() else k2(), k) = if x then k1() else k2()
E(f(�x), k) = if A(f) �= Unknown then K(f)(�x) else if k = k then k(f(�x)) else f(�x)
E(k(f(�x)), k) = if A(f) �= Unknown then K(f)(�x) else k(f(�x))
E(�x, k) = if k = k then k(�x) else �x

Figure 3: The contification transformation

Definition 2. A safe analysis A is maximal if for all safe
analyses B and all functions f ∈ Func, B(f) 	= Unknown ⇒
A(f) 	= Unknown.

In Section 5.3, we will prove by construction that for all
programs there exists a maximal safe analysis. A maximal
analysis need not be unique – the following program frag-
ment shows why.
fun fm () = ... k (f ()) ...

fun f () = ... g () ...

fun g () = ...

For this program, the analyses A1 and A2 below are both
safe and maximal.

A1 A2

fm Unknown Unknown
f k k

g f k

4.2 Transformation
Figure 3 presents the formal definition of the contification

transformation. P(P ) removes uncalled and contified func-
tions and processes the remaining ones. We abuse FOL syn-
tax slightly and use set notation to indicate collections of si-
multaneous function (or continuation) declarations. F(g, k)
prefixes the set of functions that are contified in g onto the
transform of g’s body. We define Cont⊥ = Cont ∪ {⊥} and
use k to range over Cont⊥. For a function f that is contified,
we need a fresh element of Cont to replace it; we write this
element as K(f).

E(e, k) transforms expression e, changing calls and returns
according to context k. If k = k, then the expression is
transformed so that it transfers control to the continuation
k. If k = ⊥, then control can be transferred as before.
The rule for transforming a set of continuation declarations
translates the bodies of the continuations and inserts all
functions that are contified at one of the continuations.
The rule for a tail call depends on the context and whether

or not the callee is contified. If the callee is contified
(A(f) 	= Unknown), then the tail call is replaced by a jump
to the contified function. In this case, the context is irrel-
evant because the body of the callee was transformed with

the proper context. On the other hand, if the callee is not
contified, then the transformation depends on the context k.
If k = k, then there is a continuation to which f must return,
so the tail call becomes a nontail call with continuation k.
On the other hand, if k = ⊥, then there is no continuation
to which f must return, so the tail call remains a tail call.
The rule for a nontail call is based on ∗3, which ensures that
if f is a nontail callee and A(f) 	= Unknown, then A(f) = k.
The rule for a return replaces the return by a jump when
the context requires it.

4.3 Related Transformations
Contification is superficially similar to lambda drop-

ping [9], which also nests functions. However, they are com-
plementary optimizations. Roughly speaking, the “block
sinking” component of lambda dropping uses the call graph
to nest a function f in another function g if all calls to f
are from within g. Block sinking does not approximate the
returns of a function and does not change calls from tail to
nontail or vice versa. Nesting f within g does not imply
that f only expresses intraprocedural control flow within g
and can share the same stack frame as g.
Contification is also superficially similar to Appel’s loop

headers [3]. However, once again, they are complementary.
The introduction of a loop header is a transformation lo-
cal to a particular function that allows self tail calls to be
turned into jumps and loop invariant code to be moved into
the header. It is a useful local optimization, which can take
advantage of contification, but does not expose any new in-
traprocedural contro-flow information. Appel relies on in-
lining to do that. MLton introduces loop headers as one of
the many FOL optimizations.

4.4 Well-definedness of the transformation
We state but do not prove in this paper that for safe analy-

ses, the result of the transformation obeys the lexical scoping
rules and type system of FOL. In this section, we focus on
the more fundamental issue of showing that the transforma-
tion is well-defined, again, only for safe analyses. The rules
in Figure 3 are not defined by induction on the structure
of expressions, since the mutually recursive calls of E and
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F use sets of functions determined by the analysis. Conse-
quently, for some nonsensical analyses, the transformation
is not well-defined.
As an example of a nonsensical analysis, suppose an anal-

ysis A specifies A(f) = g and A(g) = f . This would force f
to be contified in g and g to be contified in f , causing F and
E to be undefined. The problem with such an analysis is
that there is a “cycle” from f to g back to f through A. In
order to rule out such analyses, we define a directed graph
G = (Node,Edge) based on analysis A.

Node = Return
Edge = {(A(f), f) | f ∈ Func} ∪

{(D(k), k) | k ∈ Cont}
The mutually recursive calls to F and E in Figure 3 cor-
respond to a traversal of G starting at Unknown. Thus, if
there are no cycles reachable from Unknown in G, the trans-
formation is well-defined. This leads us to introduce the
definition of an acyclic analysis, and to prove that a safe
analysis is always acyclic, and hence always leads to a well-
defined transformation.

Definition 3. An analysis A is cyclic if there exists a se-
quence l0, ..., ln ∈ Cont ∪ Func such that l0 = ln and for
all 0 ≤ i < n, either (1) li ∈ Func and A(li) = li+1 or (2)
li ∈ Cont and D(li) = li+1. An analysis is acyclic if it is not
cyclic.

The key to proving that safety implies acyclicity is the obser-
vation is that any purported cycle in a safe analysis must be
composed of unreachable functions, which must be marked
Uncalled by ∗1, contradicting the definition of a cycle. We
formalize this reasoning in the following theorem.

Theorem 2. If A is a safe analysis, then A is acyclic.

Proof. Suppose, by way of contradiction, that there ex-
ists l0, ..., ln ∈ Cont ∪ Func such that l0 = ln and for each
0 ≤ i < n, either (1) li ∈ Func and A(li) = li+1 or (2)
li ∈ Cont and D(li) = li+1. Condition (2) implies that
there exists li ∈ Func. Condition (1) implies that for each
li ∈ Func, A(li) 	= Uncalled. Hence R(li), by Lemma 1, and
there exists a path of calls from fm to li.
Consider a fixed path p from fm to li, composed of nontail

calls (gj , gj+1, kj) ∈ N and tail calls (gj , gj+1) ∈ T. There
is a least j such that gj ∈ {l0, . . . , ln}, say gj = li′ .
We show that A(gj′) 	= li′+1 for all j

′ ≤ j by induc-
tion on j′. If j′ = 0, then gj′ = fm and A(gj′) =
Unknown by ∗2, because A is safe. If j′ > 0, then ei-
ther (gj′−1, gj′ , kj′−1) ∈ N or (gj′−1, gj′) ∈ T is on p.
In the first case, A(gj′) ∈ {kj′−1,Unknown} by ∗3, be-
cause A is safe. By the minimality of j and condition (2),
kj′−1 	= li′+1. Hence, A(gj′) 	= li′+1. In the second case
A(gj′) ∈ {gj′−1,A(gj′−1),Unknown} by ∗4, because A is
safe. By the minimality of j and condition (1), gj′−1 	= li′+1

and, by the induction hypothesis, A(gj′−1) 	= li′+1. Hence,
A(gj′) 	= li′+1.
Thus A(li′) 	= li′+1, which is a contradiction.

Theorem 2 guarantees that G is an acyclic graph if A is
safe. In fact, G is a forest of exactly two trees, rooted at
Uncalled and Unknown respectively.

ACall(f) =




Uncalled if ¬R(f)
Unknown if f = fm

l if OuterN(f) ∪ OuterT(f) = {l}
and InnerN(f) = ∅

Unknown otherwise

OuterN(f) = {k | (g, f, k) ∈ N and R(g) and g �= f}
OuterT(f) = {g | (g, f) ∈ T and R(g) and g �= f}
InnerN(f) = {k | (f, f, k) ∈ N}

Figure 4: Call analysis

5. ANALYSES
In this section, we present three safe analyses: the origi-

nal contification analysis used in MLton, the analysis used
in Moby, and our new dominator analysis. These analyses
vary in their complexity and their utility in guiding trans-
formations. Their range demonstrates the generality of our
framework and the ease with which analyses can be defined
on FOL. As in Section 4, we assume a fixed, but arbitrary,
program P = (fm,N,T) when defining the analyses.

5.1 The ACall Analysis
Our first analysis, the call analysis, is a syntax driven

analysis that has been used in MLton since September 1998.
The analysis is based on the observation that a function has
one return location if there is exactly one reachable call to
the function from outside its body and if there are only tail
calls to the function within its body. For example, this was
the case with the loop function used to sum the elements in
a vector in Section 3.
We formally define the call analysis in Figure 4. We define

the multisets OuterN(f), OuterT(f), and InnerN(f), corre-
sponding to the continuations of reachable nontail calls to
f from outside its body, the reachable tail callers of f from
outside its body, and the continuations of nontail calls to f
from inside its body, respectively. For a function f , there
is one reachable call from outside its body if and only if
OuterN(f) ∪ OuterT(f) = {l}. Further, all calls from f to
itself are in tail position if and only if InnerN(f) = ∅.
The proof of safety of the call analysis is straightforward.

Theorem 3. ACall is safe.

Proof. We show that ACall satisfies each of the safety
conditions.

∗1 If ¬R(f), then ACall(f) = Uncalled by the first clause.

∗2 ACall(fm) = Unknown by the second clause.

∗3 Suppose (f, g, k) ∈ N such that R(f). Therefore,
R(g) and ACall(g) 	= Uncalled, because the first clause
does not apply. If f = g, then InnerN(g) 	= ∅ and
ACall(f) = Unknown ∈ {k,Unknown}. If f 	= g, then
OuterN(g) ⊇ {k} and ACall(g) ∈ {k,Unknown}.

∗4 Suppose (f, g) ∈ T such that f 	= g and R(f). There-
fore, R(g) and ACall(g) 	= Uncalled, because the first
clause does not apply. Also, OuterT(g) ⊇ {f} and
ACall(g) ∈ {f,Unknown} ⊆ {f,ACall(f),Unknown}.

Although the call analysis is useful in practice, it fails
to contify functions in many simple cases. For example,
consider the following program fragment.
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ACont = lfp(C)

C : Analysis → Analysis
C(A)(f) = if f = fm

then Unknown

else
⊔ ( {k | (g, f, k) ∈ N and R(g)}

∪ {A(g) | (g, f) ∈ T and R(g)}
)

Figure 5: Continuation analysis

fun fm () = ... k (f ()) ... k (g ()) ...

fun f () = ... g () ... h () ...

fun g () = ... f () ... h () ...

fun h () = ...

In this case, f, g, and h always return to the continuation
k, either directly or by returning to a function which always
returns to the continuation k. Thus we could contify f, g,
and h within fm. However, because each function is called at
multiple places outside its body, the call analysis is useless:
ACall(f) = ACall(g) = ACall(h) = Unknown. We would like
an algorithm to compute the safe analysis A(f) = A(g) =
A(h) = k. The analysis in the next section will do just that.

5.2 The ACont Analysis
Our second analysis, the continuation analysis, is based

on the analysis in Moby, which “computes an approximation
of return continuations of each known function” [21]. Unlike
the call analysis, which gives up if a function is called from
many places, the continuation analysis contifies a function
if the function returns to a single continuation through one
or more (possibly disjoint) sequences of tail calls. Viewed
from the point of view of CPS, ACont determines when a
continuation variable takes on a constant value.
To define the continuation analysis, we arrange the ele-

ments of Return in a lattice. We define Uncalled � l �
Unknown for any l ∈ Cont ∪ Func and define ρ1 � ρ2 to be
the least upper bound of ρ1 and ρ2. We extend � and �
pointwise to form a lattice on Analysis.
The continuation analysis is defined via the least fixpoint

in Figure 5. The idea behind the analysis is that a function
f returns to continuation k if all reachable nontail calls to f
use k and if all tail callers of f also return to continuation k.
The least fixpoint ties the recursion in the previous sentence.
It ensures that ACont(f) = k if and only if all paths of
reachable tail calls to f start with a function that returns
to continuation k.

Theorem 4. ACont is safe.

Proof. We show that ACont satisfies each of the safety
conditions.

∗1 Recall ATriv defined in Section 4.1. If R(f), then
C(ATriv)(f) � Unknown = ATriv(f). If ¬R(f), then
C(ATriv)(f) = Uncalled = ATriv(f). Hence, we have
C(ATriv) � ATriv and ACont = lfp(C) � ATriv. There-
fore, if ¬R(f), then ACont(f) � ATriv(f) = Uncalled.
Therefore, ACont(f) = Uncalled.

∗2 ACont(fm) = C(ACont)(fm)
= if f = fm then Unknown else . . .
= Unknown.

∗3 Suppose (f, g, k) ∈ N such that R(f).
ACont(g)
= C(ACont)(g)
= if g = fm

then Unknown

else
⊔ ( {k | (f, g, k) ∈ N and R(f)}

∪ {ACont(f) | (f, g) ∈ T and R(f)}
)

= if g = fm then Unknown else �({k} ∪ . . .)
∈ {k,Unknown}.

∗4 Suppose (f, g) ∈ T such that R(f). Then
ACont(g)
= C(ACont)(g)
= if g = fm

then Unknown

else
⊔ ( {k | (f, g, k) ∈ N and R(f)}

∪ {ACont(f) | (f, g) ∈ T and R(f)}
)

= if g = fm then Unknown else �(ACont(f) ∪ . . .)
∈ {ACont(f),Unknown}
⊆ {f,ACont(f),Unknown}.

The continuation analysis differs from the analysis in [21]
in several ways. First, our analysis operates over the en-
tire program, while Reppy’s analyzes a module in isolation.
Second, ours operates over a first-order IL, while Reppy’s op-
erates over a higher-order language. Third, ours runs after
MLton’s control-flow analysis, which exposes control-flow
information in the first order FOL program. Reppy’s anal-
ysis introduces imprecision when escaping function cause un-
known control-flow. Finally, since our language is already in
continuation-passing style, there is no need for “local CPS
conversion” in order to apply the contification transforma-
tion.
The example at the end of Section 5.1 demonstrates that

on some programs ACont contifies more functions thanACall.
One can also construct programs on which ACall will con-
tify more functions than ACont. Furthermore, there are pro-
grams with contifiable functions that are found by neither
analysis. For example, consider the following program frag-
ment.

fun fm () = ... k1 (f ()) ... k2 (f ()) ...

fun f () = ... g1 () ... g2 () ...

fun g1 () = ... h () ...

fun g2 () = ... h () ...

fun h () = ...

The following three analyses, ACall, ACont, and A, are safe.
ACall ACont A

fm Unknown Unknown Unknown
f Unknown Unknown Unknown
g1 f Unknown f

g2 f Unknown f

h Unknown Unknown f

The analysis A captures our intuition that h can be conti-
fied along with g1 and g2 within f. The call analysis fails
to contify h because it is called from more than one place.
Further, although h always returns to f, the continuation
analysis fails to contify h because it determines that f, g1,
g2, and h all have the same set of multiple return locations,
{k1, k2}. The analysis in the next section will compute A.
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ADom(f) = if parentD(f) = Root
then if R(f)

then Unknown
else Uncalled

else l, where l ∈ ancestorsD(f) and
parentD(l) = Root

D is the dominator tree of G = (Node,Edge)

Node = {Root} ∪ Cont ∪ Func
Edge = {(Root, fm)} ∪ †1

{(Root, k) | k ∈ Cont}∪ †2{(Root, f) | ¬R(f)} ∪ †3
{(f, g) | (f, g) ∈ T and R(f)} ∪ †4
{(k, g) | (f, g, k) ∈ N and R(f)} †5

Figure 6: Dominator analysis

5.3 The ADom Analysis
Our final analysis, the dominator analysis, fully utilizes

the control flow information available in FOL to deter-
mine exactly how far a function should be allowed to return
through tail calls. The analysis can contify a function f
in some cases even if f ’s continuation is not constant. Af-
ter defining the dominator analysis, we will prove that it is
both safe and maximal. That is, it contifies at least as many
functions as ACall, ACont, or any other safe analysis.
The dominator analysis, ADom, is defined in Figure 6. It

uses a directed graph G similar to the call graph of the pro-
gram, but which contains the return information needed for
contification. For f ∈ Func, each edge (l, f) ∈ Edge in-
dicates that f returns to the location l. If l = Root, then
the edge indicates that f has no return location; either f is
uncalled or f is the main function. The dominator analysis
is defined using the dominator tree D of G. As a reminder,
a node n dominates a node n′ in a graph if and only if every
path from the root to n′ goes through n [17]. Further, node n
immediately dominates node n′ if n dominates n′ and every
dominator of n′ (other than n′) dominates n. The nodes
of the graph can be arranged into the dominator tree, D,
where n is the parent of n′ if n is the immediate domina-
tor of n′. Figure 7 shows the graph G and the dominator
tree D corresponding to the program fragment at the end of
Section 5.2.
To ensure that the dominator tree of G exists, we need the

following lemma, which shows that G is a connected graph
rooted at Root.

Lemma 5. For all l ∈ Cont ∪ Func, there is a path from
Root to l in G.

Proof. If l ∈ Cont, then (Root, l) ∈ Edge by †2. If
l ∈ Func and ¬R(l), then (Root, l) ∈ Edge by †3. Finally,
if l ∈ Func and R(l), then there is a path of calls from fm
to l. We proceed by induction on the length of the path. If
n = 0 then l = fm and (Root, l) ∈ Edge by †1. If n > 0,
then there exists f ∈ Func such that there exists a path of
n − 1 calls from fm to f and (f, l, k) ∈ N or (f, l) ∈ T. If
(f, l, k) ∈ N, then (k, l) ∈ Edge by †5 and (Root, k) ∈ Edge

by †2. If (f, l) ∈ T, then (f, l) ∈ Edge by †4 and there is a
path from Root to f in G by the induction hypothesis.

The set of dominators of a node f ∈ Func is the set of
locations to which f always returns in any execution of the

Root

fm k1 k2

f

g1 g2

h

†1 †2†2

†4†4

†4†4

†5†5

Graph G

Root

fm k1 k2f

g1 g2 h

Dominator tree D

Figure 7: Dominator example

program. However, we cannot define ADom(f) to be an ar-
bitrary dominator of f ; this could easily lead to an unsafe
analysis. Instead, for l ∈ Cont ∪Func, let parentD(l) be the
parent of l in D and let ancestorsD(l) be the set of ancestors
of l in D. The dominator analysis defines ADom(f) as the
dominator of f closest to Root. Thus, we see in Figure 7
that ADom(g1) = ADom(g2) = ADom(h) = f.

Theorem 6. ADom is safe.

Proof. We show that ADom satisfies each of the safety
conditions.

∗1 If ¬R(f), then (Root, f) ∈ Edge by †3. Hence,
parentD(f) = Root and ADom(f) = Uncalled.

∗2 Note (Root, fm) ∈ Edge by †1 and R(fm). Hence,
parentD(fm) = Root and ADom(fm) = Unknown.

∗3 Suppose (f, g, k) ∈ N and R(f). Hence, R(g),
(Root, k) ∈ Edge by †2, and (k, g) ∈ Edge by †5.
Therefore, parentD(g) ∈ {Root, k} and parentD(k) =
Root. Hence, ADom(g) ∈ {k,Unknown}.

∗4 Suppose (f, g) ∈ T and R(f). Hence, R(g) and
(f, g) ∈ Edge by †4. If parentD(g) = Root, then
ADom(g) = Unknown ∈ {f,ADom(f),Unknown}. If
parentD(g) 	= Root, then let l ∈ ancestorsD(g) such
that parentD(l) = Root. Thus, ADom(g) = l. If l = f ,
then ADom(g) = f ∈ {f,ADom(f),Unknown}. If l 	= f ,
then l ∈ ancestorsD(f) and parentD(f) 	= Root, be-
cause l dominates f in G. Therefore, ADom(f) = l and
ADom(g) = ADom(f) ∈ {f,ADom(f),Unknown}.

To show that ADom is maximal, we need the following
lemma that relates a safe analysis to paths in the graph G.

Lemma 7. Let A be safe and let Root, l, f0, . . . , fn be a
path in G. Then A(fn) ∈ {fn−1, . . . , f0, l,Unknown}.

Proof. By induction on the length of the path.
n = 0: Suppose l ∈ Func. First, note that (Root, l) ∈

Edge either by †1 (with l = fm) or by †3 (with ¬R(l)).
Second, note that (l, f0) ∈ Edge by †4 (with (l, f0) ∈ T and
R(l)). Thus, l = fm. Therefore, A(l) = Unknown by ∗2 and
A(f0) ∈ {l,A(l),Unknown} = {l,Unknown}, by ∗4.
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Contify Compile Executable sizes Run times
time time (bytes, normalized) (normalized)

Program Lines (seconds) (seconds) none ACall ACont ADom ACall ACont ADom

barnes-hut 1,262 0.06 4.68 67,641 0.93 0.93 0.94 0.68 0.97 0.81
count-graphs 538 0.05 2.82 66,012 0.85 0.83 0.83 0.73 0.80 0.71
hamlet 22,895 2.54 103.59 1,107,661 0.95 0.92 0.90 0.79 0.86 0.94
kit 73,490 13.24 682.18 5,729,035 1.02 0.99 0.97 0.72 0.93 0.72
lexgen 1,327 0.28 10.08 170,578 0.89 0.90 0.85 0.73 0.76 0.68
mlton 92,134 13.26 572.55 5,242,115 0.94 0.91 0.90 0.72 0.88 0.74
mlyacc 7,295 0.67 37.91 472,514 0.96 0.94 0.93 0.59 0.91 0.59
raytrace 2,378 0.36 19.89 235,058 0.89 0.93 0.84 1.05 1.05 1.05
tensor 2,947 0.17 5.42 75,418 0.88 0.87 0.90 0.14 0.14 0.15
vliw 3,694 0.65 24.20 278,006 1.03 0.97 1.00 0.59 0.81 0.59
zern 595 0.02 1.49 45,375 0.89 0.89 0.91 0.29 0.29 0.31

Table 1: Compilation and run time statistics

Suppose l ∈ Cont. Note that (Root, k) ∈ Edge by †2
and (l, f0) ∈ Edge by †4 (with (g, f0, l) ∈ N and R(g)).
Therefore, A(f0) ∈ {l,Unknown}, by ∗3.
n > 0: Note that (fn−1, fn) ∈ Edge by †4 with

(fn−1, fn) ∈ T and R(fn−1). By ∗4, A(fn) ∈
{fn−1,A(fn−1),Unknown}. From the induction hypothesis,
we know that A(fn−1) ∈ {fn−2, . . . , f0, l,Unknown}. Thus
we know that A(fn) ∈ {fn−1, fn−2, . . . , f0, l,Unknown}.

A simple corollary of Lemma 7 is the key to proving that
ADom is maximal.

Corollary 8. If A is safe and A(f) ∈ Cont ∪Func then
A(f) dominates f in G.

Theorem 9. ADom is maximal.

Proof. Let B be an arbitrary safe analysis and f ∈ Func
be arbitrary. We consider the possible values of B(f). If
B(f) = Unknown, we are done. If B(f) = Uncalled, then
¬R(f) and ADom(f) = Uncalled by Lemma 1, because B
and ADom are safe analyses. Finally, suppose B(f) = l ∈
Cont ∪Func. Hence, f 	= fm and R(f) by ∗2 and Lemma 1,
because B is safe. By examining the cases in the definition
of Edge, we see that every path from Root to f in G has
length greater than 1. By Corollary 8 applied to B, l =
B(f) dominates f in G. Therefore, parentD(f) 	= Root and
ADom(f) ∈ Cont ∪ Func.

The argument above proves that ADom is a maximal anal-
ysis, but we can be more precise about the relationship be-
tween ADom and other safe analyses. One can extend the
argument above to prove the following theorem.

Theorem 10. Let A be safe. If A(f) = k ∈ Cont, then
ADom(f) = k. If A(f) ∈ Func, then ADom(f) ∈ Cont ∪
Func.

This theorem shows that the dominator analysis favors con-
tification at continuations over contification in functions. It
also implies that the contification and dominator analyses
should agree on many functions. In fact, k dominates f
in the graph defined in Figure 6 if and only if all paths of
reachable tail calls start with a function that returns to k;
so, ACont is equivalent to an analysis that assigns A(f) = k
if k dominates f .

6. EXPERIMENTS
As described in Section 1, many compiler optimizations

are enabled by exposing the intraprocedural control-flow of
a program through the contification transformation. It is
therefore not surprising that a contification pass (similar to
the call analysis) was the first FOL optimization added to
MLton in September 1998. The contification pass now runs
at three places in the FOL optimizer, with intervening opti-
mization passes including constant propagation, dead-code
elimination, inlining, raise-to-jump transformation, loop op-
timizations, and shrink reductions [5].
To demonstrate the practicality and benefits of the trans-

formation and analyses described in this paper, we imple-
mented a new contification pass in the MLton compiler.
Paralleling the presentation in Section 4, in which we sepa-
rate contification into analysis and transformation, our new
pass consists of an analysis phase that produces an anno-
tation and a transformation phase that contifies based on
the annotation. We have implemented each of the analyses
described in Section 5. The implementations of ACall and
ACont are straightforward. The implementation of ADom

uses the Lengauer-Tarjan dominator algorithm [17] as pre-
sented in [19].
We measured the impact of contification on compile times

and running times for a representative sample of benchmarks
with sizes up to 92K lines. Among the benchmarks, lexgen,
mlyacc, and vliw are standard [2]; barnes-hut, tensor,
and zern are floating-point intensive and count-graphs is
mostly symbolic.1 The raytrace benchmark was the win-
ning entry in the Third Annual ICFP Programming Con-
test.2 The mlton benchmark is the compiler itself; kit is
the ML-Kit (Version 3) [23]; hamlet is the HaMLet SML in-
terpreter.3 The benchmarks were compiled with the native
x86 backend and executed on an 800 MHz Intel Pentium III

1Juan Jose Garcia Ripoll (worm@arrakis.es) wrote
tensor, David McClain (dmcclain@azstarnet.com) wrote
zern, and Henry Cejtin (henry@sourcelight.com) wrote
count-graphs.
2Team PLClub (http://www.cis.upenn.edu/~sumii/icfp)
wrote the original version of raytrace in O’Caml.
Stephen Weeks translated it to SML, and John Reppy
(jhr@research.bell-labs.com) made further modifica-
tions.
3Andreas Rossberg (rossberg@ps.uni-sb.de) wrote
hamlet.
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Analysis barnes-hut count-graphs hamlet kit

none 0/118 0/96 0/43 0/102 0/82 0/48 0/1689 0/1625 0/943 0/7381 0/7192 0/3083
ACall 67/118 6/49 0/ 7 61/102 7/41 0/11 384/1689 14/1273 2/648 2776/7381 69/4527 2/1691
ACont 64/118 6/52 0/10 62/102 8/40 0/10 370/1689 13/1287 0/702 2570/7381 54/4736 3/1900
ADom 72/118 5/44 0/ 9 69/102 6/33 0/ 9 653/1689 12/1004 0/578 3402/7381 50/3911 3/1585

Analysis lexgen mlton mlyacc raytrace

none 0/245 0/229 0/125 0/9921 0/8435 0/2389 0/818 0/779 0/453 0/301 0/277 0/121
ACall 121/245 3/124 0/ 37 4207/9921 439/4695 2/1153 419/818 9/396 1/111 124/301 10/177 0/ 39
ACont 109/245 2/136 0/ 51 3656/9921 544/5247 0/1456 360/818 7/455 1/172 117/301 10/184 0/ 46
ADom 139/245 2/106 0/ 34 4749/9921 438/4156 0/1049 473/818 7/342 0/103 172/301 9/129 0/ 32

Analysis tensor vliw zern

none 0/156 0/129 0/59 0/501 0/447 0/247 0/49 0/41 0/25
ACall 98/156 10/ 57 0/ 7 229/501 20/268 0/ 92 34/49 3/15 0/ 2
ACont 94/156 9/ 61 0/11 209/501 15/288 0/115 36/49 1/13 0/ 2
ADom 102/156 10/ 53 0/ 6 254/501 16/245 0/ 83 37/49 1/12 0/ 1

Table 2: Number of functions contified in each contification pass

with 256 MB of memory, with the exceptions of mlton and
kit, which were compiled on a 733 MHz Intel Pentium III
with 512 MB of memory. All benchmarks are available at
http://www.sourcelight.com/MLton.
In the first part of Table 1, we report the number of lines

of SML for each benchmark, the total amount of time spent
in contification, and the total compile time in seconds. The
number of lines does not include approximately 8000 lines of
basis library code that MLton prefixes to each program. The
contify time is the sum over all three contification passes,
and includes the time to compute all three analyses and to
perform the transformation based on ADom. The total con-
tification time was typically about 2% of the total compile
time, and was never more than 4%.
In the second part of Table 1, we report the absolute size

in bytes for each benchmark compiled with contification dis-
abled. We also report the sizes when compiled using each
analysis, normalized to the absolute size. The results show
that contification almost always has a beneficial effect on
executable size. In the third part of Table 1, we report
the running time of each benchmark, compiled using each
contification analysis, normalized to the running time with
contification disabled. Unsurprisingly, these results show
that contification typically yields a significant speedup.
In Table 2, we report the number of functions contified by

each analysis. For each benchmark, there are four rows, one
for each analysis (none means contification was disabled).
Each row contains the counts for each of the three contif-
ication passes. Each cell in the table reports the number
functions contified, followed by a “/”, followed by the total
number of functions in the program input to the contifica-
tion pass.
The counts show that for most of the benchmarks, by the

last round of contification, there are no contifiable functions
detectable by the analysis. They also show that contifica-
tion, by any analysis, has a significant impact on the total
number of functions in the program. Although other opti-
mizations reduce the number of functions (e.g., inlining), in
these examples, a contified program generally has at most
half the number of functions of an uncontified program.
The counts also show that in almost all cases, because

ADom is maximal, it produces a result with fewer functions
than ACall or ACont. The only exception is barnes-hut,
where ADom yields a program with 9 functions, but ACall

yields a program with 7 functions. In this case, ADom conti-
fied a function that ACall did not, increasing its size beyond
the limit used by the inliner that runs between the second
and third rounds of contification. This interaction with the
inliner also explains why contification, which should enable
more optimizations, does not always lead to smaller code
size. It also partially explains why contification with ADom

does not always lead to better running times than contif-
ication with ACall and ACont. We also suspect that this
discrepancy in running times is an artifact of the evolution
of the FOL optimizer, which developed around an original
contification pass similar to ACall.

6.1 Mutual recursion in FOL
This section contains a minor note about a difference be-

tween the FOL language described in this paper and as im-
plemented in MLton.
The contification transformation is complicated by the

fact that MLton’s current implementation of FOL does not
allow continuations to be simultaneously declared as mu-
tually recursive. Recall that the contification transforma-
tion described in Section 4.2 requires the set of functions
{f ∈ Func | A(f) = l} to be declared simultaneously. The
limitations of the implementation of FOL are problematic
when this set contains multiple functions. However, because
continuation declarations can be nested, it is possible to de-
fine mutually recursive continuations by nesting one within
another (this approach is used in [9]). Unfortunately, this
nesting is not sufficient to contify all sets of mutually recur-
sive definitions. For example, we cannot contify g1 and g2
in the following code fragment.

fun f (b) = let cont k (x) = ...
cont l1 () = k (g1 ())
cont l2 () = k (g2 ())

in if b then l1 () else l2 ()
end

fun g1 () = ... g2 () ...
fun g2 () = ... g1 () ...

Fortunately, the limitations of FOL did not significantly
affect the results in this section. When our full bench-
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mark suite (including 18 additional benchmarks not re-
ported here) is compiled with the dominator analysis, there
are over 11,000 functions marked contifiable, only 78 of
which must be nested and only 25 of which cannot be con-
tified due to the absence of mutual recursion.
The absence of mutually recursive continuations in FOL

is a historical accident, and is not fundamental. We are
considering improving MLton to handle them.

7. CONCLUSION
Contification is not a new concept in functional-language

compiler optimizations, but all previous work in this area
has focused on presenting a single contification analysis and
transformation. We have presented a simple, yet general,
framework for expressing contification analyses. This gen-
erality has allowed us to define a maximality criterion for
analyses and to introduce a single transformation that can
be applied to any analysis satisfying a safety condition. We
have shown how to express a number of existing analyses in
our framework and presented a new maximal analysis based
on the dominator tree of a program’s call graph.
Finally, our implementation in MLton has shown that con-

tification is efficient, taking a small percentage of compile
time, and leads to improved run times. Although we have
verified that the dominator analysis contifies more functions
than existing analyses, we have not been able to show that
this leads to consistently better run times. Nevertheless,
the increased contification has convinced us to switch to
the dominator analysis MLton. We believe that the unde-
sirable interaction with inlining can be fixed and that the
improved intraprocedural control-flow information provided
by the dominator analysis will provide more benefits than
other analyses to existing and planned optimizations.
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